22.10.2014 Views

The significance of coherent flow structures for the turbulent mixing ...

The significance of coherent flow structures for the turbulent mixing ...

The significance of coherent flow structures for the turbulent mixing ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ñ<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

†<br />

<br />

©<br />

©<br />

©<br />

<br />

©<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

z<br />

}<br />

}<br />

}<br />

} „<br />

#<br />

e<br />

e<br />

‡<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

z<br />

z<br />

&<br />

z<br />

0.2 0.4 0.6 0.8 1‰<br />

2.4 Particle image analysis<br />

PDF<br />

0.2<br />

0.15<br />

0.1<br />

∆y=0.1 px<br />

∆y=0.2 px<br />

∆y=0.3 px<br />

∆y=0.4 px<br />

∆y=0.5 px<br />

2D Gauss<br />

∆x=0.0 px<br />

0.15<br />

0.1<br />

1D Gaussian<br />

2D Gaussian<br />

0.05<br />

0.05<br />

0<br />

−0.04 ‡ −0.02 ‡ 0.00 0.02 0.04<br />

0<br />

ˆ<br />

0<br />

PDF<br />

0.2<br />

0.15<br />

0.1<br />

†<br />

∆y=0.0 px<br />

∆y=0.1 px<br />

∆y=0.2 px<br />

∆y=0.3 px<br />

∆y=0.4 px<br />

∆y=0.5 px<br />

2D Gauss<br />

∆x=1.47 px<br />

0.24<br />

0.18<br />

0.12<br />

0.05<br />

0.06<br />

0<br />

1.3 1.4 1.5 1.6<br />

… ∆x [pixel]<br />

0<br />

ˆ<br />

0<br />

0.2 0.4 0.6 1‰ 0.8<br />

∆y … [pixel]<br />

FIGURE 2.13: Numerical comparison between two-dimensional (solid lines) and three-point Gaussian<br />

peak-fit (graphs with symbols (left column) and dotted lines) with iterative<br />

Ž<br />

Levenberg-Marquardt<br />

pixel) as<br />

method <strong>for</strong> two fixed particle image displacements (*)Š+7‹ (top: pixel, (*)Š+Œ-0/<br />

bottom:<br />

a function <strong>of</strong> 6 <strong>the</strong> -shift. <strong>The</strong> graph represents <strong>the</strong> probability density functions <strong>for</strong> a set <strong>of</strong> simulated<br />

displacement fields (each 2000 by 16000 pixel in size) analysed with a 2nd order accurate multi-pass<br />

interrogation technique 3 with 3 pixel interrogation window and 50% overlap.<br />

<br />

Figure 2.14 shows <strong>the</strong> distribution obtained by analysing experimental data. <strong>The</strong> displacement<br />

was achieved by trans<strong>for</strong>ming one image as will be outlined in <strong>the</strong> following chapter. It can<br />

KT<br />

[pixel] [pixel]<br />

&c<br />

0.0<br />

#dc’##a“ #dc”# # &c<br />

0.1<br />

#dc”#a#a“ #dc”#a“ &c<br />

0.2<br />

#dc”#d&3“ #dc”#a„d& &c<br />

0.3<br />

0.4<br />

0.5<br />

0.1<br />

#dc”#a#•e<br />

#dc’##•e<br />

#dc”#d&Le<br />

KT<br />

} z<br />

„ae<br />

}a} eŽ“<br />

&c #dc”#•–]&<br />

e &c eŽ# #dc”#<br />

}a}<br />

#dc”# e &c<br />

[pixel]<br />

#dc{&0‘<br />

#dc{&0#a#<br />

#dc{&&3“<br />

#dc{&0#<br />

#dc{&<br />

#dc{&<br />

#dc’#a–‘<br />

TABLE 2.1:<br />

between<br />

Comparison<br />

two-dimensional<br />

(bottom row) and threepoint<br />

Gaussian peak-fit <strong>for</strong><br />

two particle image displacements<br />

in ) -direction<br />

(centre column (*) +<br />

pixel, right column (*)K+<br />

‹ Ž<br />

-0/ pixel) as a function <strong>of</strong><br />

6 <strong>the</strong> -shift.<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!