21.11.2014 Views

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.7. REACTION VELOCITY 145<br />

1.0<br />

0.8<br />

Y(L=2)<br />

θ, ε, Y<br />

0.6<br />

0.4<br />

0.2<br />

θ 0<br />

θ<br />

Y(L=0.5)<br />

Y(L=1)<br />

ε<br />

0.0<br />

−10 −8 −6 −4 −2 0 2 4 6 8 10<br />

ξ<br />

Figure 6.4: Distributions of Y , ε and θ as functions of ξ, when the activation energy is zero.<br />

b) Heating zone.<br />

Likewise, in this zone one obtains<br />

θ = θ 0 + (θ i − θ 0 ) e ξ , (6.52)<br />

Y = 1 L<br />

θ i − θ 0<br />

(1 + 1 ) −1<br />

θ i − θ 0<br />

e Lξ , (6.53)<br />

1 − θ i L 1 − θ i<br />

ε = 0. (6.54)<br />

Figures 6.3 and 6.4 represent the solutions computed for the following typical<br />

values: θ 0 = 0.125, θ i = 0.4 and L = 0.5, 1 and 2.<br />

6.7 Reaction velocity<br />

The correct expression for the reaction velocity w is, in accordance with the laws of<br />

Chemical Kinetics, 3 w = ρ n k(1 − Y ) n . (6.55)<br />

3 See Chap. 1, §8.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!