21.11.2014 Views

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6.9. SOLUTION OF THE FLAME EQUATIONS 149<br />

second iteration of the Boys-Corner method but it is very arduous to perform and,<br />

furthermore, like the first one it does not converge towards the correct solution for<br />

increasing activation temperatures.<br />

1.5<br />

1.4<br />

1.3<br />

ZELDOVICH<br />

1.2<br />

Λ −1/2 / Λ −1/2<br />

exact<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

WILDE<br />

KARMAN 3<br />

SENDAGORTA<br />

BOYS−CORNER 2nd IT.<br />

KARMAN 2<br />

KARMAN 1<br />

0.7<br />

BOYS−CORNER<br />

0.6<br />

2 4 6 8 10 12 14 16<br />

θ a<br />

Figure 6.5: Comparison between the flame propagation problem eigenvalue obtained by<br />

different approximated methods and the exact value for θ 0 = 0.125.<br />

1.3<br />

Λ −1/2 / Λ −1/2<br />

exact<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

ZELDOVICH<br />

WILDE SENDAGORTA<br />

KARMAN 3<br />

BOYS−CORNER 2nd IT.<br />

KARMAN 2<br />

KARMAN 1<br />

BOYS−CORNER<br />

0.6<br />

2 4 6 8 10 12 14 16<br />

θ a<br />

Figure 6.6: Comparison between the flame propagation problem eigenvalue obtained by<br />

different approximated methods and the exact value for θ 0 = 0.250.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!