21.11.2014 Views

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13.15. DROPLET EVAPORATION 327<br />

4<br />

0.25<br />

P 1<br />

(kg/cm 2 )<br />

3<br />

2<br />

P 1<br />

(kg/cm 2 )<br />

0.20<br />

n−heptane<br />

0.15<br />

0.10<br />

n−exane<br />

0.05<br />

n−octane<br />

0.00<br />

250 275 300 325 350<br />

T (K)<br />

n−heptane<br />

n−octane<br />

n−exane<br />

1<br />

n−<strong>de</strong>cane<br />

n−do<strong>de</strong>cane<br />

0<br />

250 300 350 400 450 500<br />

T (K)<br />

Figure 13.6: Partial pressure of fuel vapour as a function of temperature.<br />

Therefore a relation exists between p 1s and T s of the form<br />

Figure 13.6 gives Eq. (13.93) for some typical fuels.<br />

f(p 1s , T s ) = 0. (13.93)<br />

Furthermore 14 p 1<br />

p = M a Y<br />

( 1<br />

) , (13.94)<br />

M c Ma<br />

1 + − 1 Y 1<br />

M c<br />

where M c and M a are, respectively, the molar masses of the fuel vapour and of the<br />

gas through which it diffuses.<br />

When (13.94) is particularized on the droplet surface, taking the result into<br />

(13.93), the following relation between Y 1s and T s is obtained<br />

This relation and (13.92) <strong>de</strong>termine Y 1s and T s .<br />

F (Y 1s , T s ) = 0. (13.95)<br />

Once T s is known the evaporation velocity m of the droplet is <strong>de</strong>duced from<br />

(13.90) by making r = r s and T = T s . Thus obtaining<br />

m = 4πλ (<br />

∞r s<br />

1 − T s<br />

+ q )<br />

l − c p1 T s q l<br />

ln<br />

. (13.96)<br />

c p1 T ∞ c p1 T ∞ c p1 (T ∞ − T s ) + q l<br />

14 See chapter 1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!