21.11.2014 Views

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

158 CHAPTER 6. LAMINAR FLAMES<br />

which through integration, gives<br />

√ ( 2Λ L<br />

1 − ε ≃<br />

1 − θ 0 (1 − θ 0 )(1 + a)<br />

) n 2<br />

√ ∫ 1<br />

λ (1 − θ) n<br />

λ f θ n−δ e −θ 1 − θ<br />

a<br />

θ dθ. (6.97)<br />

This expression, when taken into the <strong>de</strong>nominator of (6.67) after we have neglected<br />

1 − θ, supplies an approximation for dε/ dθ which introduced in (6.95) gives<br />

the <strong>de</strong>sired value for J. The result obtained from this approximation corresponds to<br />

the curves named Kármán 3 of Fig. 6.5 and 6.6.<br />

Tho approximation for J is even better when, after Sendagorta, we calculate<br />

dε/ dθ in (6.95) by using for ε vs θ an approximation of the form<br />

where P is a polynomial of the form<br />

θ<br />

ε = P e −θ 1 − θ<br />

a<br />

θ , (6.98)<br />

P = 1 + a 1 (1 − θ) + a 2 (1 − θ) 2 + · · · + a m (1 − θ) m , (6.99)<br />

whose coefficients must be <strong>de</strong>termined by studying the behavior ε close to θ = 1 in<br />

the differential equation (6.67).<br />

For example, in the case of a first-or<strong>de</strong>r reaction (n = 1), it gives for J<br />

J = H 0 + a 1 H 1 + a 2 H 2 + · · · + a m H m , (6.100)<br />

where<br />

H j =<br />

∫ 1<br />

θ i<br />

(1 − θ) j e −θ a<br />

1 − θ<br />

θ dθ, (j = 1, 2, . . . m). (6.101)<br />

This integral may be expressed by a law of recurrences starting from H 0 , which<br />

in turn is expressed through the exponential integral in the following way<br />

being<br />

H 0 =<br />

∫ 1<br />

θ i<br />

e −θ 1 − θ<br />

a<br />

θ dθ<br />

= 1 − θ a e θ a<br />

E 1 (θ a ) − θ i e −θ a<br />

E 1 (θ) =<br />

∫ ∞<br />

θ<br />

1 − θ i<br />

θ i<br />

e −z<br />

z<br />

+ θ a e θ a<br />

E 1<br />

(<br />

θa<br />

θ i<br />

)<br />

,<br />

(6.102)<br />

dz. (6.103)<br />

For example, if in the preceding case one limits approximation (6.99) to the first two<br />

terms,<br />

P = 1 + a 1 (1 − θ), (6.104)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!