21.11.2014 Views

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

Untitled - Aerobib - Universidad Politécnica de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

196 CHAPTER 6. LAMINAR FLAMES<br />

This can be done by means of the diffusion relations given in Eqs. (6.264) and (6.265),<br />

the steady-state Eq. (6.246), and Eq. (6.255).<br />

expressed as<br />

Let X 1f and X 3f be the final values for X 1 and X 3 . These variables can be<br />

X 1 = X 1f − α 1 , (6.285)<br />

X 3 = X 3f + α 3 , (6.286)<br />

where α 1 and α 3 are functions of θ which approach zero when θ approaches one.<br />

When Eqs. (6.246), (6.285) and (6.286) are combined with Eq. (6.255), the<br />

following equation is obtained for the <strong>de</strong>termination of X 2<br />

√<br />

k 1 RT f<br />

X 1f − α 1 + X 3f + α 3 + X 2 +<br />

k 5 p θX 2 = 1. (6.287)<br />

The computation that follows holds for hydrogen-rich flames where X 2f =<br />

X 4f = 0 and the following condition is consequently satisfied<br />

X 1f + X 3f = 1. (6.288)<br />

Equation (6.287) can now be written as<br />

√<br />

k 1 RT f<br />

X 2 +<br />

k 5 p θX 2 − (α 1 − α 3 ) = 0. (6.289)<br />

On solving Eq. (6.289), one obtains for X 2<br />

(√<br />

√ )2<br />

k 1<br />

X 2 = θ RT f<br />

+ α 1 − α 3 − 1 k 1<br />

θ RT f<br />

. (6.290)<br />

4k 5 p<br />

2 k 5 p<br />

Von Kármán and Penner [40] give for<br />

where<br />

√<br />

k1<br />

k 5<br />

the expression<br />

√<br />

k1<br />

k 5<br />

= 1.676 e − θ r<br />

θ , (6.291)<br />

θ r =<br />

Finally, combining Eqs. (6.291) and (6.290) it is obtained<br />

22 605<br />

RT f<br />

. (6.292)<br />

X 2 =<br />

(√<br />

g(θ)2 + α 1 − α 3 − g(θ)) 2<br />

, (6.293)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!