11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

polymers with ceramic fillers have lower melt<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>in</strong> a close range <strong>of</strong> 153.4, 153.8 and 154.9<br />

ºC for membranes with BaTiO3, SiO2 and Al2O3,<br />

respectively. The small change <strong>in</strong> the melt<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>of</strong> the composite membranes probably<br />

results from the orientation <strong>of</strong> the polymer<br />

cha<strong>in</strong>s along the fiber axis when drawn <strong>in</strong>to the<br />

fibers rather than the <strong>in</strong>teractions <strong>of</strong> the ceramic<br />

nanoparticles with the polymer. The %<br />

crystall<strong>in</strong>ity values obta<strong>in</strong>ed from the DSC data<br />

follows the order BaTiO3 (47.1%) < SiO2 (47.9)<br />

< Al2O3 (49.2) < membrane without filler<br />

(74.5%) [8]. The mechanical properties <strong>of</strong> the<br />

membranes (based on the estimated values at the<br />

failure <strong>of</strong> the samples) are given <strong>in</strong> Table 1.<br />

endo<br />

Heat flow<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

153.4 °C<br />

153.8 °C<br />

154.9 °C<br />

49.35 J/g<br />

50.15 J/g<br />

51.54 J/g<br />

80 100 120 140 160 180 200 220<br />

Temperature (°C)<br />

Fig. 2. Thermal properties (DSC) <strong>of</strong> electrospun<br />

P(VdF-HFP) membranes with 6% (a) Al2O3, (b) SiO2<br />

and (c) BaTiO3.<br />

3.3. Porosity, electrolyte uptake and electrolyte<br />

retention<br />

The results <strong>of</strong> porosity determ<strong>in</strong>ation by nbutanol<br />

uptake method are presented <strong>in</strong> Table 1.<br />

The porosity varies <strong>in</strong> the narrow range <strong>of</strong> 84-<br />

87% for the membranes, show<strong>in</strong>g a slightly<br />

<strong>in</strong>creas<strong>in</strong>g trend with the filler content <strong>in</strong> the<br />

order BaTiO3 > SiO2 = Al2O3 > membrane<br />

without filler.<br />

Fig. 3 presents a comparison <strong>of</strong> the<br />

electrolyte uptake (1M LiPF6 <strong>in</strong> EC/DMC) <strong>of</strong> the<br />

membranes and the maximum uptake value <strong>of</strong><br />

each membrane is also presented <strong>in</strong> Table 1. The<br />

fully <strong>in</strong>terconnected pore structure <strong>of</strong> these<br />

membranes helps fast liquid penetration <strong>in</strong>to the<br />

membrane, and hence the uptake process gets<br />

(c)<br />

(b)<br />

(a)<br />

- 3 -<br />

stabilized with<strong>in</strong> a span <strong>of</strong> only 10 m<strong>in</strong>. The<br />

relative absorption ratio (R) <strong>of</strong> the NCPEs and<br />

the PE without filler are presented <strong>in</strong> Fig. 3. It<br />

was seen that the electrolyte leakage reaches an<br />

equilibrium state with<strong>in</strong> 1 h and all the PEs<br />

exhibit a high retention <strong>of</strong> the electrolyte with a<br />

cumulative leakage ∼ 11% and ∼ 14% after 1 h,<br />

respectively, <strong>in</strong> the case <strong>of</strong> the NCPEs and the<br />

PE without filler.<br />

Electrolyte uptake (%)<br />

450<br />

375<br />

300<br />

225<br />

150<br />

75<br />

0<br />

Relative absorption ratio (R)<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

No filler<br />

Al 2 O 3<br />

0 20 40 60 80 100 120<br />

Time (m<strong>in</strong>)<br />

0 10 20 30 40 50 60<br />

SiO 2<br />

BaTiO 3<br />

Wett<strong>in</strong>g time (m<strong>in</strong>)<br />

Fig. 3. Electrolyte uptake (%) <strong>of</strong> electrospun P(VdF-<br />

HFP) membranes with different ceramic fillers<br />

(liquid electrolyte: 1M LiPF6 <strong>in</strong> EC/DMC).<br />

3.4. Ionic transport properties<br />

The ionic conductivity <strong>of</strong> the NCPEs at 25 ºC<br />

varies <strong>in</strong> the order BaTiO3 > SiO2 > Al2O3 > PE<br />

without filler. The higher ionic conductivity<br />

results from the <strong>in</strong>teractions <strong>of</strong> O/OH groups on<br />

the filler surface and the large amorphous phase<br />

<strong>of</strong> the polymer [9]. And also the well knit porous<br />

structure <strong>of</strong> the membranes is one factor that<br />

facilitates the diffusion <strong>of</strong> the ions, hence high<br />

ionic conductivity was observed even for the PE<br />

without filler.<br />

The tortuosity values calculated from the<br />

porosity and the ionic conductivity are listed <strong>in</strong><br />

Table 1. As is evident from Table 1, the<br />

tortuosity <strong>of</strong> P(VdF-HFP) membranes with<br />

ceramic fillers decreases as a consequence <strong>of</strong> the<br />

nature <strong>of</strong> the filler, and follows the reverse order<br />

as is observed for the porosity <strong>of</strong> the membranes.<br />

These results are <strong>in</strong> agreement with those<br />

reported by Abraham et al. [6]. Song et al. also

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!