11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Modulus <strong>of</strong> Rupture, Modulus <strong>of</strong> Elasticity and Stress at the limit <strong>of</strong> Proportionality<br />

Table 4 shows the results <strong>of</strong> the MOR, MOE, and SP for flax fiber and its graft copolymer<br />

re<strong>in</strong>forced PF composites. MOR for phenol-formaldehyde and composites re<strong>in</strong>forced with flax<br />

fiber has been found to be 60.0 and 77.76 N/mm 2 , respectively. Value <strong>of</strong> MOR was found to be<br />

112.8 N/mm 2 for the composites re<strong>in</strong>forced with flax-g-poly(MA). Values <strong>of</strong> MOE were found to<br />

be 3404.8 N/mm 2 and 5248.0 N/mm 2 for the composites re<strong>in</strong>forced with orig<strong>in</strong>al flax and flax-gpoly(MA),<br />

respectively. PF composites re<strong>in</strong>forced with flax-g-poly(MA) showed maximum value<br />

<strong>of</strong> SP (98.4 N/mm 2 ). The m<strong>in</strong>imum value <strong>of</strong> SP was found <strong>in</strong> case <strong>of</strong> PF matrix [20]. Results<br />

showed that re<strong>in</strong>forcement <strong>of</strong> flax-g-poly(MA) <strong>in</strong>creased the MOR. It was determ<strong>in</strong>ed that<br />

re<strong>in</strong>forcement <strong>of</strong> PF composites with flax-g-poly(MA) <strong>in</strong>creased the MOE and SP <strong>in</strong> comparison<br />

to flax fiber.<br />

Conclusion<br />

Graft copolymerization is an effective method for modify<strong>in</strong>g the properties <strong>of</strong> flax. Percentage<br />

crystall<strong>in</strong>ity and thermal stability <strong>of</strong> flax-g-poly(MA) have been found close to that <strong>of</strong> flax fiber.<br />

Phenol-formaldehyde composites re<strong>in</strong>forced with flax-g-poly(MA) showed better mechanical<br />

properties <strong>in</strong> comparison to orig<strong>in</strong>al flax fiber.<br />

References<br />

1. T. Paramasivam and A.P.J. Abdul Kalam, Fibre. Sci. Technol., 7, 85, (1974).<br />

2. G.S. Patterson, A.S. H<strong>of</strong>fmann, and E.W. Merill, J. Appl. Polym. Sci., 4, 159 (1960).<br />

3. C. Sella, A. Chapiro, and A. Matsumoto, J. Polym. Sci., 57, 529 (1962).<br />

4. A. Chapiro, J. Polym. Sci., 23, 377 (1957).<br />

5. S. Ishikawa, J. Polym. Sci. Pol. Lett., 3, 959 (1965).<br />

6. Y. Liu, L. Yang, Z. Shi, and J. Li, Polym. Int., 53, 1561 (2004).<br />

7. L.Y. Mwaikambo and M.P. Ansell, Compos. Sci. Technol., 63, 1297 (2003).<br />

8. B. Schartel, U. Braun, U. Schwarz, and S. Re<strong>in</strong>emann, Polymer, 44, 6241 (2003).<br />

9. B.S. Kaith, Susheel Kalia, Polym. Compos., 29, 791 (2008).<br />

10. D.K. Dwivedi, A.S. S<strong>in</strong>gha, S. Kumar, and B.S. Kaith, Int. J. Plast. Tech., 8, 299<br />

(2004).<br />

11. A. S. S<strong>in</strong>gha, Susheel Kumar, and B. S. Kaith, Int. J. Plast. Tech., 9, 427 (2005).<br />

12. B.S. Kaith, A.S. S<strong>in</strong>gha, and Susheel Kalia, Int. J. Plast. Tech., 10, 572 (2006).<br />

13. B.S. Kaith, A.S. S<strong>in</strong>gha, and Susheel Kalia, Autex Res. J., 7, 119 (2007).<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!