11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4. Conclusion<br />

In the present study, we have prepared nanohybrids <strong>of</strong> carboxymethyl cellulose (CMC) and<br />

hydroxyapatite (HA) nanoparticle by co-precipitation method at room temperature. The<br />

FTIR, 31 P-NMR spectroscopy and wide-angle X-ray diffraction measurements have shown<br />

the formation CMC-nanohybrids. TG analysis revealed that content <strong>of</strong> CMC <strong>in</strong><br />

nanohybrids is l<strong>in</strong>ear with <strong>in</strong>itial <strong>in</strong>put. The SEM and TEM images shown that<br />

nanohybrids are formed as aggregates <strong>of</strong> HA nanoparticles embedded <strong>in</strong> CMC matrix. The<br />

morphological aspects <strong>of</strong> calc<strong>in</strong>ed samples have shown the s<strong>in</strong>ter<strong>in</strong>g capacity <strong>of</strong> HA<br />

nanoparticles. Possible mechanism for <strong>in</strong>teraction between HA and CMC, nucleation and<br />

growth is discussed. Thus, we can summarize that the nanohybrids <strong>of</strong> hydroxyapatite<br />

nanoparticles can be prepared for mimick<strong>in</strong>g the process <strong>of</strong> nucleation and growth <strong>in</strong><br />

nature us<strong>in</strong>g biodegradable and biocompatible polymer like CMC.<br />

Acknowledgement:<br />

The authors are grateful to Dr. S. Sivaram, Director, National Chemical Laboratory (NCL), Pune, for<br />

provid<strong>in</strong>g the <strong>in</strong>frastructure and encouragement. Dr. P.A. Joy, Physical and Materials Chemistry Division,<br />

NCL, Pune is acknowledged for his fruitful discussions and valuable suggestions.<br />

References<br />

1. S.I. Stupp, P.V. Braun, Science 277 (1997) 1242.<br />

2. T. Kokubo, H.-M. Kim, M. Kawashita, Biomaterials 24 (2003) 2161.<br />

3. D. Skrtic, J.M Antonucci, E.D. Eanes, J. Res. Natl. Inst. Stand. Technol. 108 (2003) 167.<br />

4. H.A. Lowenstam, S. We<strong>in</strong>er, On Biom<strong>in</strong>eralization, Oxford University Press, New York, 1989.<br />

5. Y. Doi, T. Horiguchi, J. Biomed. Mater. Res. 31 (1996) 43.<br />

6. T.J. Webster, R.W. Siegel, R. Bizios, Biomaterials 21 (2000) 1803.<br />

7. Y. Miyamoto, K.I. Shikawa, Biomaterials 19 (1998) 707.<br />

8. I. Lee, S.W. Han, H. J. Choi, K. Kim, Adv. Mater. 13 (2001) 1617.<br />

9. T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, J. Biomater. Res. 23 (1989) 125.<br />

10. A.G. Walton, J. Blackwell, Biopolymers, Academic Press, New York, 1973.<br />

11. P.Y. Yang, S. Kokot, J. Appl. Polym. Sci. 60 (1998) 1137.<br />

12. M. Markovic, B.O. Fowler, M.S. Tung, J. Res. Natl. Inst. Stand. Technol. 109 (2004) 553.<br />

13. C. Jäger, T. Welzel, W. Meyer-Zaika, M. Epple, Magn. Reson. Chem. 44 (2006) 573.<br />

14. A. Bigi, A. Incerti, N. Roveri, E. Foresti-Serantoni, R. Mongiorgi, L.R. di Sansever<strong>in</strong>o, A.<br />

Krajewski, A. Ravaglioli, Biomaterials 1 (1980) 140.<br />

15. H. Y. Juang, M. H. Hon, Biomaterials 17 (1996) 2059<br />

16. H.E.-Hosse<strong>in</strong>i, M. R. Housa<strong>in</strong>dokht, M. Chahkandi, Mater. Chem. Phys. 106 (2007) 310<br />

Tables and Figure<br />

Fig1a: FTIR Spectra <strong>of</strong> as-synthesized samples 1b: FTIR Spectra <strong>of</strong> calc<strong>in</strong>ed samples<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!