11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

compared to diffusion rate results <strong>in</strong> overshoot. Due to the thermodynamic <strong>in</strong>teraction with<br />

macromolecular cha<strong>in</strong>s, water enters before these cha<strong>in</strong>s can relax or rearrange. Later the<br />

rearrangement <strong>of</strong> these cha<strong>in</strong>s result <strong>in</strong> partial exclusion <strong>of</strong> water lead<strong>in</strong>g to overshoot<strong>in</strong>g effect<br />

[23]. In short overshoot<strong>in</strong>g effect depends on the NCO/OH ratio and pH <strong>of</strong> the surround<strong>in</strong>g<br />

medium.<br />

Conclusion<br />

The water uptake <strong>of</strong> the hydrogel based on NR/PEG block copolymers varies sensitively with<br />

NCO/OH ratio. The maximum Q∞ mol% uptake is shown by sample with NCO/OH ratio 1.1<br />

followed by a decrease <strong>in</strong> the Q∞ mol% values <strong>in</strong> heavily crossl<strong>in</strong>ked samples. Increase <strong>in</strong><br />

polymer mobility, free volume and better <strong>in</strong>teractions exist<strong>in</strong>g <strong>in</strong> the sample with NCO/OH ratio<br />

1.1 is the reason beh<strong>in</strong>d the high Q∞ mol% uptake. The sorption k<strong>in</strong>etics has been studied and the<br />

experimental data suggests that the swell<strong>in</strong>g process obeys first – order k<strong>in</strong>etics. Maximum D *<br />

and S values are obta<strong>in</strong>ed <strong>in</strong> sample with NCO/OH ratio 1.1 which provide ample pro<strong>of</strong> for the<br />

better molecular <strong>in</strong>teractions exist<strong>in</strong>g between the polymer – water system <strong>in</strong> this sample. The S<br />

values <strong>of</strong> the block copolymers are higher compared to D * and P values result<strong>in</strong>g <strong>in</strong> a precedence<br />

<strong>of</strong> sorption over both diffusion and permeation.<br />

The entire block polymer samples exhibit remarkable overshoot at pH 4, pH 7 and pH 9 while <strong>in</strong><br />

the case <strong>of</strong> samples swollen <strong>in</strong> water, the overshoot<strong>in</strong>g effect is limited to samples with higher<br />

NCO/OH ratios. The reason for the overshoot<strong>in</strong>g effect can be traced back to the swell<strong>in</strong>g<br />

transport mechanism. The samples exhibit<strong>in</strong>g overshoot<strong>in</strong>g effect follow anomalous transport<br />

with a bias to non – Fickian mode <strong>of</strong> transport. The experimental results reveal the <strong>in</strong>fluence <strong>of</strong><br />

NCO/OH ratio and pH <strong>of</strong> the surround<strong>in</strong>g medium on the overshoot<strong>in</strong>g effect shown by the<br />

NR/PEG block copolymer samples.<br />

References<br />

1. Kim YH, Bae YH, Kim SW. J Control Release 1994; 28(2), 143-152.<br />

2. Rosiak JM, Ulanski P, Pajewski LA, Yoshi F, Makuuchi K. Radiat Phys Chem 1995;<br />

46(2): 161-168.<br />

3. Kim J, Conway A, Chauhan A. Biomaterials 2008; 29(14): 2259-2269.<br />

4. Bajpai AK, Shrivastava M. J Appl Polym Sci 2002; 85(7): 1419-1428.<br />

5. Qu<strong>in</strong>tana JR, Valderruten NE, Katime I. Langmuir 1999; 15(14): 4728-4730.<br />

6. Guan YL, Shao L, Liu J, Yao KD. J Appl Polym Sci 1996; 62(8): 1253-1258.<br />

7. H<strong>of</strong>fman AS. J Control Release 1987; 6(1): 297-305.<br />

8. Park TG, H<strong>of</strong>fman AS. Macromolecules 1993; 26(19): 5045-5048.<br />

9. Ishihara K, Muramoto N, Sh<strong>in</strong>ohara I. J Appl Polym Sci 1984; 29(1): 211-217.<br />

10. Eisenberg SR, Grodz<strong>in</strong>ski AJ. J Membr Sci 1984; 19(2): 173-194.<br />

11. Lee WF, L<strong>in</strong> YH. J Appl Polym Sci 2001; 81(6): 1360-1371.<br />

12. Katayama S, Hirokawa Y, Tanaka T. Macromolecules 1984; 17(12): 2641-2643.<br />

13. Wang C, Zhang G, Dong Y, Chen X, Tan H. J Appl Polym Sci 2002; 86(12): 3120-3125.<br />

14. Karaky K, Brochon C, Schlatter G, Hadziioannou G. S<strong>of</strong>t Matter 2008; 4(6): 1165-1168.<br />

15. Rav<strong>in</strong>dran T, Nayar MRG, Francis DJ. J Appl Polym Sci 1988; 35(5): 1227-1239.<br />

16. Nair, R.C. Block copolymers from liquid natural rubber and polyethers, Ph.D thesis 1998,<br />

pp 73-75.<br />

17. George SC, Thomas S. Polymer 1996; 37(26): 5839-5848.<br />

18. Kim D, Caruthers JM, Peppas NA. Macromolecules 1993; 26(8): 1841-1847.<br />

19. Johnson T, Thomas S. J Mater Sci 1999; 34(13): 3221-3239.<br />

20. Harogoppad SB, Am<strong>in</strong>abhavi TM. Macromolecules 1991; 24(9): 2598-2605.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!