11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

load<strong>in</strong>g. Na+MMT system shows a decrease <strong>in</strong> the tensile strength and stress at break <strong>in</strong>dicat<strong>in</strong>g<br />

brittleness characteristics predom<strong>in</strong>antly due to presence <strong>of</strong> clay agglomerates which leads to<br />

microcrack formation at the <strong>in</strong>terface. The nanocomposites prepared us<strong>in</strong>g C30B &B109 shows an<br />

<strong>in</strong>crease <strong>of</strong> 21.85 %and 20.91 % respectively as compared with the matrix polymer. PMMA/C20A<br />

nanocomposites exhibit less tensile strength <strong>of</strong> 67.94 MPa confirm<strong>in</strong>g comparatively less<br />

compatibility with the matrix polymer. Further grafted samples <strong>in</strong> all the systems exhibits lower<br />

tensile strength as compared with ungrafted nanocomposites system reveal<strong>in</strong>g brittleness<br />

characteristics <strong>of</strong> PMMA with <strong>in</strong>terface modification <strong>in</strong> the nanocomposites system. Stra<strong>in</strong> at break<br />

decreases with the <strong>in</strong>corporation <strong>of</strong> nanoclays, PMMA/C30B nanocomposites exhibited a decrease <strong>of</strong><br />

62.71% with PMMA/B109 to 54.1% and PMMA/C20A to 91.6 % respectively as compared with the<br />

matrix polymer. Graft<strong>in</strong>g <strong>of</strong> PMMA with MA and <strong>in</strong>fluence <strong>of</strong> organic modifier /<strong>in</strong>tercalant type had<br />

virtually no effect on the stress as well as stra<strong>in</strong> at break <strong>of</strong> the nanocomposite hybrids.<br />

Dynamic Mechanical Analysis:<br />

The temperature dependence plots <strong>of</strong> storage modulus E’ <strong>of</strong> PMMA and its nanocomposites as<br />

measured from –150 0 C to 150 0 C are depicted <strong>in</strong> fig.5. As observed <strong>in</strong> the figure, the glassy state<br />

storage modulus at 25 0 C <strong>in</strong>creases to the tune <strong>of</strong> 9.2% <strong>in</strong> PMMA/C30B, 15.5 % PMMA/B109 and<br />

29.3% PMMA/C20A respectively as compared with the virg<strong>in</strong> matrix. The grafted nanocomposites<br />

also demonstrated moderate <strong>in</strong>crease <strong>in</strong> E’ <strong>of</strong> PMMA. PMMA-g-MA/C30B exhibits maximum<br />

<strong>in</strong>crease <strong>in</strong> storage modulus Above 80 0 C, the E’ drops with considerable fall <strong>in</strong> matrix modulus<br />

observed <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> Tg <strong>in</strong>dicat<strong>in</strong>g that the material undergoes a glass/ rubber transition. DMTA<br />

tests <strong>in</strong>dicated remarkable <strong>in</strong>crease <strong>in</strong> E’ <strong>in</strong> the nanocomposites system as compared with virg<strong>in</strong><br />

matrix. The E’ values display improvement <strong>in</strong> glassy regions (except deviations <strong>in</strong> PMMA/B 109<br />

system) confirm<strong>in</strong>g that <strong>in</strong>corporation <strong>of</strong> nanoclay <strong>in</strong>duces re<strong>in</strong>forc<strong>in</strong>g effect. At high temperature<br />

regions the nanocomposites system as well as PMMA displayed similar modulus and approaches<br />

constant level <strong>of</strong> temperature beyond 130 0 C<br />

Conclusion:<br />

PMMA nanocomposities were prepared us<strong>in</strong>g melt blend<strong>in</strong>g technique. The effect <strong>of</strong> organic<br />

modifier on the mechanical, thermal and flammability properties <strong>of</strong> nanocomposites has been<br />

<strong>in</strong>vestigated. Mechanical properties <strong>in</strong>dicated optimum tensile modulus is PMMA/C30B 5% as<br />

compared to virg<strong>in</strong> PMMA matrix and other nanocomposites. WAXD & TEM micrographs showed<br />

evidence <strong>of</strong> exfoliation and <strong>in</strong>tercalation <strong>in</strong> PMMA/C30B nancomposites. Thermal study <strong>in</strong>dicates an<br />

<strong>in</strong>crease <strong>in</strong> onset <strong>of</strong> decomposition temperature and marg<strong>in</strong>al <strong>in</strong>crease <strong>in</strong> Tg <strong>of</strong> nanocomposites. DMA<br />

studies revealed substantial <strong>in</strong>crease <strong>in</strong> the E’ <strong>of</strong> the nanocomposites with the <strong>in</strong>corporation <strong>of</strong> C30B<br />

nanocomposites.<br />

References<br />

1. Blumste<strong>in</strong>, A.J Polym sci. part A: Gen pap 1965, 3, 2653<br />

2. Wang, D.; Zhu, J.; Yao, Q.; Wilkie, C.A. Chem mater 2002,14,3837<br />

3. Bandyopadhyay, S.; Giannelis, E. P.; Hsieh, A. J. Polym2000, 82, 208.<br />

4. Hsieh, A. J.; Giannelis, E. P. Presented at the American Physical Society Symposia<br />

Presentation, Atlanta, GA, March 1999.<br />

5. Salahudd<strong>in</strong>, N.; Shehata, M. Polymer 2001, 42, 8379.<br />

6. S.u, S.; wilkie, C.A. J.Polym Sci. Part A: polym Chem 2003, 41, 1124<br />

7. Lee, D.C.; Jang, L.W. J Appl Polym Sci., 1996,61,1117<br />

8. Huang, X.; Britta<strong>in</strong>, W.J. Macromolecules, 2001,34,3255<br />

9. S.Kumar, J.P. Jog, U.P, J. Appl. Polym. Sci. 2003, 89, 1186

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!