11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>in</strong> Fig. 8. The cell based on the PEs with<br />

BaTiO3 delivers charge and discharge capacities<br />

<strong>of</strong> 164 mAh/g, which correspond to 96.5%<br />

utilization <strong>of</strong> the active material. The<br />

performance <strong>of</strong> the cell with PEs conta<strong>in</strong><strong>in</strong>g<br />

Al2O3 and SiO2 is slightly lower as the discharge<br />

capacities <strong>of</strong> 153 and 156 mAh/g are obta<strong>in</strong>ed,<br />

respectively.<br />

Fig. 7. AC impedance spectra <strong>of</strong> polymer electrolytes<br />

based on electrospun P(VdF-HFP) membranes with<br />

different ceramic fillers (Li/NCPE/Li cells, 10 mHz<br />

to 2 MHz).<br />

Voltage (V)<br />

(Ω)<br />

-Z ''<br />

4.0<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

3.0<br />

2.8<br />

2.6<br />

600<br />

525<br />

450<br />

375<br />

300<br />

225<br />

150<br />

75<br />

0<br />

0 100 200 300 400 500 600 700 800 900<br />

No filler<br />

Al 2 O 3<br />

SIO 2<br />

BaTiO 3<br />

Z ' (Ω)<br />

2.4<br />

0 20 40 60 80 100 120 140 160 180<br />

Specific capacity (mAh/g)<br />

No filler<br />

Al 2 O 3<br />

Fig. 8. Initial charge-discharge properties <strong>of</strong><br />

Li/NCPE/LiFePO4 cells with polymer electrolytes<br />

based on electrospun P(VdF-HFP) membrane<br />

conta<strong>in</strong><strong>in</strong>g 6% <strong>of</strong> ceramic fillers (25 °C, 0.1 C-rate,<br />

2.5 to 4.0 V).<br />

4. Conclusions<br />

The nanocomposite PEs prepared by<br />

elctrosp<strong>in</strong>n<strong>in</strong>g <strong>of</strong> P(VdF-HFP) show well<br />

<strong>in</strong>terlay<strong>in</strong>g <strong>of</strong> the fibers to generate a well<br />

<strong>in</strong>terconnected porous membranes. The presence<br />

SiO 2<br />

BaTiO 3<br />

- 5 -<br />

<strong>of</strong> the nano-scale ceramic fillers improves the<br />

mechanical properties <strong>of</strong> the membranes. The<br />

<strong>in</strong>clusion <strong>of</strong> fillers creates amorphous regions by<br />

way <strong>of</strong> the <strong>in</strong>teractions between the filler<br />

surfaces and the polymer cha<strong>in</strong>s, which result <strong>in</strong><br />

the reduced crystall<strong>in</strong>ity <strong>of</strong> the polymer. The<br />

high electrolyte uptake by the NCPEs is<br />

attributed to the well <strong>in</strong>terconnected pore<br />

structures and <strong>in</strong>teractions <strong>of</strong> the fillers with the<br />

polymers as well as with the electrolyte. The<br />

nanocomposite PEs show m<strong>in</strong>imum electrolyte<br />

leakage despite very high electrolyte uptake.<br />

Among the fillers BaTiO3 has been observed to<br />

exhibit the highest electrolyte uptake, ionic<br />

conductivity, electrochemical stability and better<br />

compatibility with lithium metal. It also shows<br />

the maximum charge and discharge capacities.<br />

The reason for higher mechanical strength,<br />

electrolyte uptake and electrochemical<br />

performance <strong>of</strong> BaTiO3 is attributed to the<br />

effective dispersion <strong>of</strong> its nanoparticles <strong>in</strong> the<br />

composite membranes dur<strong>in</strong>g the electrosp<strong>in</strong>n<strong>in</strong>g<br />

process that results <strong>in</strong> better <strong>in</strong>teractions both<br />

with the polymer and the electrolyte.<br />

Acknowledgements<br />

This research was supported by M<strong>in</strong>istry <strong>of</strong> Knowledge<br />

Economy, Korea, under the Information Technology Research<br />

Center (ITRC) support program supervised by the Institute <strong>of</strong><br />

Information Technology Assessment (IITA).<br />

References<br />

[1] F. Croce, S. Sacchetti, B. Scrosati, J. Power Sources<br />

162 (2006) 685.<br />

[2] G. Jiang, S. Maeda, H. Yang, Y. Saito, S. Tanase, T.<br />

Sakai, J. Power Sources 141 (2005) 143.<br />

[3] X. Li, G. Cheruvally, J.K. Kim, J.W. Choi, J.H. Ahn,<br />

K.W. Kim, H.J. Ahn, J. Power Sources 167 (2007)<br />

491.<br />

[4] J.R. Kim, S.W. Choi, S.M. Jo, W.S. Lee, B.C. Kim, J.<br />

Electrochem. Soc. 152 (2005) A295.<br />

[5] K.M. Abraham, M. Alamgir, D.K. H<strong>of</strong>fman, J.<br />

Electrochem. Soc. 142 (1993) 683.<br />

[6] J.R. Kim, S.W. Choi, S.M. Jo, W.S. Lee, B.C. Kim,<br />

Electrochim. Acta 50 (2004) 69.<br />

[7] J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H.<br />

Ahn, G.B. Cho, K.W. Kim, H.J. Ahn, Mater. Lett. 61<br />

(2007) 3822.<br />

[8] P. Raghavan, J.W. Choi, J.H. Ahn, G. Cheruvally, G.S.<br />

Chauhan, H.J. Ahn, C. Nah, J. Power Sources<br />

(doi:10.1016/j.jpowsour.2008.04.003).<br />

[9] M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P.<br />

Bokalawala, I. Alb<strong>in</strong>sson, B.E. Mellander, J. Power<br />

Sources 119–121 (2003) 409.<br />

[10] J.Y. Song, C.L. Cheng, Y.Y. Wang, C.C. Wan, J.<br />

Electrochem. Soc. 149 (2002) A1230.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!