11.12.2012 Views

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

Nondestructive testing of defects in adhesive joints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

eported that tortuosity decreases with the<br />

<strong>in</strong>crease <strong>in</strong> the porosity <strong>of</strong> the membranes [10].<br />

AC impedance <strong>of</strong> PEs based on electrospun<br />

P(VdF-HFP) membranes with different ceramic<br />

fillers at a temperature varies from 0 to 60 °C<br />

was determ<strong>in</strong>ed. The bulk resistance Rb <strong>of</strong> the<br />

electrolyte at 25 °C varies between 1.6, 2.2, 3.8<br />

and 4.8, respectively, for BaTiO3, SiO2, Al2O3<br />

and PE without filler, thus, denot<strong>in</strong>g a<br />

sufficiently high ionic conductivity. The<br />

temperature dependence <strong>of</strong> ionic conductivities<br />

<strong>of</strong> the NCPEs <strong>in</strong> the range <strong>of</strong> 0-60 ºC is<br />

presented <strong>in</strong> Figure 5. It can be observed that<br />

with<strong>in</strong> the temperature range the Arrhenius plots<br />

are almost l<strong>in</strong>ear.<br />

Properties<br />

Fiber diameter range<br />

(μm)<br />

Average fiber<br />

diameter (μm)<br />

Filler<br />

Al 2O3 SiO2 BaTiO3<br />

0.4-2.2 1-4.9 0.7-4.5 0.9-3.3<br />

1.2 2.78 2.22 1.76<br />

Porosity (%) 84 85 85 87<br />

Electrolyte uptake<br />

(%)<br />

Ionic conductivity at<br />

25 °C (mS/cm)<br />

Electrolyte retention<br />

ratio (R)<br />

Tensile strength<br />

(MPa)<br />

425 459 459 462<br />

4.21 5.92 6.45 7.21<br />

0.86 0.88 0.88 0.89<br />

6.5 9.2 10.3 12.5<br />

Modulus (MPa) 9.2 15.8 16.9 17.3<br />

Elongation at break<br />

(%)<br />

75 62 60 58<br />

Tortuosity 14.81 12.56 12.04 11.52<br />

Table 1. Properties <strong>of</strong> electrospun membranes and<br />

nanocomposite polymer electrolytes based on the<br />

membranes activated with 1M LiPF6 <strong>in</strong> EC/DMC.<br />

3.5. Electrochemical properties<br />

The electrochemical stability w<strong>in</strong>dow <strong>of</strong><br />

electrospun P(VdF-HFP) based PE is shown <strong>in</strong><br />

Fig. 6. The PE based on P(VdF-HFP) without<br />

ceramic filler exhibits an anodic stability up to<br />

4.7 V. With the <strong>in</strong>corporation <strong>of</strong> filler particles <strong>in</strong><br />

the polymer matrix, the electrochemical stability<br />

is enhanced. The stability order for the NCPEs<br />

follows as: 4.8 V (Al2O3) = 4.8 V (SiO2) < 4.9 V<br />

(BaTiO3). Thus, NCPEs have good anodic<br />

stability above 4.7 versus Li/Li + , i.e., sufficient<br />

- 4 -<br />

to be compatible with most <strong>of</strong> the common<br />

cathode materials used for lithium battery.<br />

log σ (S/cm)<br />

-1.8<br />

-2.0<br />

-2.2<br />

-2.4<br />

-2.6<br />

-2.8<br />

-3.0<br />

No filler<br />

Al 2 O 3<br />

SiO 2<br />

BaTiO 3<br />

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7<br />

1000/T (K -1 )<br />

Fig. 5. Temperature effect <strong>of</strong> the ionic conductivity<br />

<strong>of</strong> PEs based on electrospun P(VdF-HFP)<br />

membranes with different ceramic fillers.<br />

The impedance behavior <strong>of</strong> NCPEs with 1 M<br />

LiPF6 <strong>in</strong> EC/DMC on lithium metal is presented<br />

<strong>in</strong> Fig. 7. Rf varies <strong>in</strong> the range 600-800 Ω with<br />

lower values recorded for the NCPEs. This<br />

<strong>in</strong>dicates a good <strong>in</strong>terface with the lithium<br />

electrode.<br />

Current (mA)<br />

1. 4<br />

2 1.<br />

1. 0<br />

8 0.<br />

0. 6<br />

4 0.<br />

0. 2<br />

0 0.<br />

No filler<br />

Al 2 O 3<br />

SiO 2<br />

BaTiO 3 O 2 (In-situ)<br />

4.0 4.2 4.4 4.6 4.8 5.0 5.2<br />

Voltage (V)<br />

Fig. 6. Anodic stability by LSV <strong>of</strong> polymer<br />

electrolytes based on electrospun P(VdF-HFP)<br />

membranes with different ceramic fillers<br />

(Li/NCPE/SS cells, 1 mV/s, 2 to 5.5 V).<br />

The PEs with and without filler have been<br />

evaluated for charge/discharge performance <strong>in</strong><br />

Li/LiFePO4 cells at room temperature. The first<br />

cycle charge-discharge properties at a current<br />

density correspond<strong>in</strong>g to 0.1 C-rate are presented

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!