30.12.2012 Views

Pharmaceutical Manufacturing Handbook: Production and

Pharmaceutical Manufacturing Handbook: Production and

Pharmaceutical Manufacturing Handbook: Production and

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TABLE 25 Aspect Ratios <strong>and</strong> Exponent Values ( m ) for<br />

Hydrophilic Matrices Studied<br />

Batch<br />

A<br />

B<br />

C<br />

D<br />

E<br />

Aspect Ratio<br />

3.80<br />

3.59<br />

3.03<br />

2.65<br />

2.16<br />

Exponent (m)<br />

0.45<br />

0.44<br />

0.43<br />

0.42<br />

0.43<br />

TABLE 26 Values of Kinetic constants Derived with Selected Equations in Range<br />

5 – 70% Acyclovir Release for All Batches Studied<br />

Batch<br />

Acyclovir,<br />

A B C D E<br />

% w/w 95 90 80 70 60<br />

Zero - order<br />

equation<br />

k 0<br />

r<br />

1.222 0.122 0.096 0.057 0.042<br />

2<br />

0.984 0.974 0.994 0.995 0.987<br />

Sum of squares<br />

total<br />

3545.9 10,352.6 6,531.4 5,149.2 1,268.0<br />

Sum of squares 53.7 278.3 51.8 24.8 16.4<br />

Higuchi<br />

equation<br />

Korsmeyer –<br />

Peppas<br />

equation<br />

Peppas <strong>and</strong><br />

Sahlin<br />

equation<br />

k H<br />

r 2<br />

residual<br />

Sum of squares<br />

total<br />

Sum of squares<br />

residual<br />

k H<br />

n<br />

r 2<br />

Sum of squares<br />

total<br />

Sum of squares<br />

residual<br />

k d<br />

k r<br />

r 2<br />

PHARMACEUTICAL TABLETS USING PERCOLATION THEORY 1039<br />

Sum of squares<br />

total<br />

Sum of squares<br />

residual<br />

12.440<br />

0.998<br />

3,545.9<br />

7.0<br />

3.167<br />

0.782<br />

0.999<br />

13,220.9<br />

16.7<br />

2.239<br />

1.615<br />

0.998<br />

49,567.0<br />

42.9<br />

3.4167<br />

0.993<br />

10,352.6<br />

66.9<br />

0.290<br />

0.843<br />

0.994<br />

26,297.6<br />

159.5<br />

2.056<br />

0.161<br />

0.999<br />

13,220.9<br />

23.3<br />

2.8518<br />

0.956<br />

12,367.8<br />

483.6<br />

0.254<br />

0.856<br />

0.998<br />

33,309.1<br />

65.5<br />

0.357<br />

0.205<br />

0.994<br />

28,716.1<br />

165.0<br />

1.7683<br />

0.932<br />

5,149.2<br />

362.4<br />

0.027<br />

1.114<br />

0.998<br />

13,879.4<br />

10.1<br />

− 0.81<br />

0.202<br />

0.997<br />

13,879.4<br />

43.7<br />

1.4694<br />

0.959<br />

1,268.0<br />

54.6<br />

0.041<br />

1.008<br />

0.997<br />

5,673.5<br />

15.2<br />

− 0.38<br />

0.127<br />

0.997<br />

5,673.5<br />

Notes: k 0 (%/min), zero - order constant; k H (%/min 1/2 ), Higuchi ’ s slope; k (%/min n ), kinetic constant of<br />

Korsmeyer model; n , diffusional exponent; k d (%/min m ), diffusional constant of Peppas <strong>and</strong> Sahlin model;<br />

k r (%/min 2 m ), relaxational constant of Peppas <strong>and</strong> Sahlin model; m , diffusional exponent that depends<br />

on geometric shape of releasing device through its aspect ratio (see Table 25 ).<br />

The analysis of the release profi les <strong>and</strong> the kinetic data indicate two different<br />

behaviors <strong>and</strong> a sudden change between them. In the fi rst behavior, which corresponds<br />

to the matrices that release the drug at slow rates, the release was controlled<br />

by the fully hydrated gel layer. For these matrices, erosion of the hydrophilic gel<br />

structure has shown an important infl uence on drug release. This is indicated by the<br />

better fi t of the drug release kinetics to the zero - order equation, the n value of<br />

15.2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!