29.01.2013 Views

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

118 M. Pustilnik and L.I. Glazman<br />

5.2 Linear Response<br />

The linear conductance can be calculat<strong>ed</strong> from the Kubo formula<br />

� ∞<br />

1<br />

G = lim dt e<br />

ω→0 � ω<br />

iωt �� Î(t), Î(0) ��<br />

, (67)<br />

where the current opera<strong>to</strong>r Î is given by<br />

0<br />

Î = d e<br />

�<br />

ˆNR −<br />

dt 2<br />

ˆ �<br />

NL , Nα<br />

ˆ = �<br />

ks<br />

c †<br />

αks c αks<br />

(68)<br />

Here ˆ Nα is the opera<strong>to</strong>r of the <strong>to</strong>tal number of electrons in the lead α. Evaluation<br />

of the linear conductance proce<strong>ed</strong>s similarly <strong>to</strong> the calculation of the impurity<br />

contribution <strong>to</strong> the resistivity of dilute magnetic alloys (see, e.g., [60]).<br />

In order <strong>to</strong> take the full advantage of the decomposition (61)–(63), we rewrite<br />

Î in terms of the opera<strong>to</strong>rs ψ1,2. These opera<strong>to</strong>rs are relat<strong>ed</strong> <strong>to</strong> the original<br />

opera<strong>to</strong>rs cR,L representing the electrons in the right and left leads via<br />

� � � �� �<br />

ψ1ks cos θ0 sin θ0 cRks<br />

=<br />

. (69)<br />

ψ2ks − sin θ0 cos θ0 cLks<br />

The rotation matrix here is the same one that diagonalizes matrix ˆ J of<br />

the exchange amplitudes in (51); the rotation angle θ0 satisfies the equation<br />

tan θ0 = |tL0/tR0|. With the help of (69) we obtain<br />

ˆNR − ˆ �<br />

NL = cos(2θ0) ˆN1 − ˆ �<br />

N2 − sin(2θ0) �<br />

ks<br />

�<br />

ψ †<br />

1ks ψ 2ks +H.c.<br />

�<br />

(70)<br />

The current opera<strong>to</strong>r Î entering the Kubo formula (67) is <strong>to</strong> be calculat<strong>ed</strong><br />

with the equilibrium Hamil<strong>to</strong>nian (61)–(63). Since both ˆ N1 and ˆ N2 commute<br />

with Heff, the first term in (70) makes no contribution <strong>to</strong> Î. When the second<br />

term in (70) is substitut<strong>ed</strong> in<strong>to</strong> (68) and then in<strong>to</strong> the Kubo formula (67),<br />

the result, after integration by parts, can be express<strong>ed</strong> via 2-particle correlation<br />

functions such as 〈ψ †<br />

1 (t)ψ2 (t)ψ† 2 (0)ψ1 (0)〉 (see Appendix B of [61] for<br />

further details about this calculation). Due <strong>to</strong> the block-diagonal st<strong>ru</strong>cture<br />

of Heff, see (61), these correlation functions fac<strong>to</strong>rize in<strong>to</strong> products of the<br />

single-particle correlation functions describing the (free) ψ2-particles and the<br />

(interacting) ψ1-particles. The result of the evaluation of the Kubo formula<br />

can then be written as<br />

� �<br />

G = G0 dω − df<br />

�<br />

1 �<br />

[−πν Im Ts(ω)] . (71)<br />

dω 2<br />

Here<br />

G0 = 2e2<br />

h sin2 (2θ0) = 2e2<br />

h<br />

s<br />

4|t 2 L0 t2 R0 |<br />

(|t2 L0 | + |t2 , (72)<br />

R0 |)2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!