29.01.2013 Views

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

Heiss W.D. (ed.) Quantum dots.. a doorway to - tiera.ru

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Low-Temperature Conduction of a <strong>Quantum</strong> Dot 127<br />

We review<strong>ed</strong> in these notes the theory of the Kondo effect in transport<br />

through quantum <strong>dots</strong>. A Coulomb-blockad<strong>ed</strong> quantum dot behaves in many<br />

aspects as an artificial “magnetic impurity” coupl<strong>ed</strong> via exchange interaction<br />

<strong>to</strong> two conducting leads. Kondo effect in transport through such “impurity”<br />

manifests itself in the lifting of the Coulomb blockade at low temperatures,<br />

and, therefore, can be unambiguously identifi<strong>ed</strong>. <strong>Quantum</strong> dot systems not<br />

only offer a direct access <strong>to</strong> transport properties of an artificial impurity, but<br />

also provide one with a broad arsenal of <strong>to</strong>ols <strong>to</strong> tweak the impurity properties,<br />

unmatch<strong>ed</strong> in conventional systems. The characteristic energy scale for the<br />

intra-dot excitations is much smaller than the corresponding scale for natural<br />

magnetic impurities. This allows one <strong>to</strong> induce degeneracies in the ground<br />

state of a dot which are more exotic than just the spin degeneracy. This is<br />

only one out of many possible extensions of the simple model discuss<strong>ed</strong> here.<br />

Acknowl<strong>ed</strong>gements<br />

The research at the University of Minnesota was support<strong>ed</strong> by NSF grants<br />

DMR02-37296, and EIA02-10736.<br />

References<br />

1. L.P. Kouwenhoven et al: In: Mesoscopic Electron Transport, <strong>ed</strong>byL.L.Sohn<br />

et al (Kluwer, Dordrecht 1997) pp 105–214<br />

M.A. Kastner: Rev. Mod. Phys. 64, 849 (1992)<br />

U. Meirav, E.B. Foxman: Semicond. Sci. Technol. 11, 255 (1996)<br />

L.P. Kouwenhoven, C.M. Marcus: Phys. World 11, 35 (1998) 97, 98, 103<br />

2. P. Joyez et al: Phys. Rev. Lett. 79, 1349 (1997)<br />

M. Devoret, C. Glattli: Phys. World 11, 29 (1998) 97<br />

3. D. Goldhaber-Gordon et al: Nature 391, 156 (1998)<br />

S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven: Science 281, 540 (1998)<br />

J. Schmid et al: Physica B 256–258, 182 (1998) 98, 101, 102, 115, 124<br />

4. L. Kouwenhoven, L. Glazman: Physics World 14, 33 (2001) 98<br />

5. J. Kondo: Prog. Theor. Phys. 32, 37 (1964) 98, 113, 117, 119<br />

6. B.L. Altshuler, A.G. Aronov: In: Electron-Electron Interactions in Disorder<strong>ed</strong><br />

Systems, <strong>ed</strong> by A.L. Efros and M. Pollak (North-Holland, Amsterdam 1985) p 1 98<br />

7. S. Ta<strong>ru</strong>cha et al: Phys. Rev. Lett. 84, 2485 (2000)<br />

L.P. Kouwenhoven, D.G. Austing, S. Ta<strong>ru</strong>cha: Rep. Prog. Phys. 64, 701 (2001) 98<br />

8. S. Sasaki et al: Nature 405, 764 (2000)<br />

S. Sasaki et al: Phys. Rev. Lett. 93, 017205 (2004) 98, 124<br />

9. M. Pustilnik et al: Lecture Notes in Physics 579, 3 (2001) 98, 124<br />

10. J. Nyg˚ard, D.H. Cobden, P.E. Lindelof: Nature 408, 342 (2000)<br />

W. Liang, M. Bockrath, H. Park: Phys. Rev. Lett. 88, 126801 (2002)<br />

B. Babić, T. Kon<strong>to</strong>s, C. Schönenberger: Preprint cond-mat/0407193 98<br />

11. J. Park et al: Nature 417, 722 (2002)<br />

W. Liang et al: Nature 417, 725 (2002)<br />

L.H. Yu, D. Natelson: Nano Lett. 4, 79 (2004) 98

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!