12.02.2013 Views

Metal Foams: A Design Guide

Metal Foams: A Design Guide

Metal Foams: A Design Guide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

186 <strong>Metal</strong> <strong>Foams</strong>: A <strong>Design</strong> <strong>Guide</strong><br />

Table 13.1 Non-dimensional parameters for<br />

cellular metal heat dissipation<br />

Heat flux Q D Q/ks[T1 T0]<br />

Prandtl number<br />

Reynolds number<br />

Cell wall thickness<br />

Pr D a/˛a<br />

Re Q D vfL/ a<br />

Qd D d/L<br />

Foam thickness Qb D b/L<br />

Nusselt number<br />

Thermal conduction<br />

Nu D Biks/ka<br />

QKf D p Power dissipation<br />

ka/ks<br />

QP D 1pvfbL2 / a 3 a<br />

˛a D thermal diffusivity of cooling fluid.<br />

13.4 Pressure drop<br />

As the heat transfer coefficient increases, so does the pressure drop across<br />

the medium. The latter can sometimes be the limiting factor in application,<br />

because of limitations on the available pumping power. The pressure drop 1p<br />

has the general form<br />

Pressure drop, ∆p/L<br />

1p/L D ⊲1/a⊳[ m a a/⊲1 ˛⊳ 2 m ]v<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

30 ppi<br />

m = 0.37<br />

0<br />

0 1 2 3<br />

Exit velocity, (m/s)<br />

2 m m<br />

f d<br />

20 ppi<br />

m = 0.43<br />

10 ppi<br />

m = 0.44<br />

4 5<br />

⊲13.13⊳<br />

Figure 13.3 The pressure drop per unit length of flow plotted against the<br />

exit velocity for Duocel foams, from which the power dissipated in pumping<br />

the fluid can be estimated

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!