19.04.2020 Aufrufe

VGB POWERTECH 10 (2019)

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 10 (2019). Technical Journal of the VGB PowerTech Association. Energy is us! Cyber security. Power generation. Environment. Flexibility.

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 10 (2019).
Technical Journal of the VGB PowerTech Association. Energy is us!
Cyber security. Power generation. Environment. Flexibility.

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

A<br />

<strong>VGB</strong><br />

journey<br />

PowerTech<br />

through<br />

1/2<br />

<strong>10</strong>0<br />

l 2013<br />

years <strong>VGB</strong> | <strong>VGB</strong> <strong>POWERTECH</strong> 1/2 (2013)<br />

Heat storage systems<br />

Heat storage systems in<br />

heat and power generation<br />

Matthias Meierer<br />

Kurzfassung<br />

Wärmespeichersysteme in der<br />

Wärme- und Stromerzeugung<br />

Im Zusammenhang mit den aktuellen Veränderungen<br />

der Struktur der Energieversorgungsanlagen<br />

in Deutschland und Europa stellt<br />

sich die Frage nach Möglichkeiten der Energiespeicherung.<br />

In dem vorliegenden Beitrag werden Möglichkeiten<br />

der Wärmespeicherung in Anlagen zur<br />

Wärme- und Stromerzeugung dargelegt. Neben<br />

der Beschreibung der eingesetzten physikalischen<br />

bzw. chemischen Prinzipien und der zugehörigen<br />

Anlagenkonzepte wird auf den Stand<br />

der Entwicklung und technische Anwendungen<br />

eingegangen. Dabei bilden realisierte Speichersysteme<br />

in Kraftwerken und KWK-Anlagen<br />

einen Schwerpunkt. Aktuelle Entwicklungen<br />

und Möglichkeiten für zukünftige Speichersysteme<br />

werden aufgezeigt.<br />

l<br />

Authors<br />

Dr. Matthias Meierer<br />

Grosskraftwerk Mannheim AG<br />

Mannheim/Germany<br />

Introduction<br />

The operation of power plants and systems<br />

must be safe, environmentally compatible,<br />

and cost-effective [1, 2]. Especially in view<br />

of an optimised level of energy efficiency, it<br />

is advisable to operate combined heat and<br />

power units. However, since the demand<br />

for electrical power and/or heat often does<br />

not coincide with the actual output (i.e.<br />

of heat and power generation plants), it is<br />

important to look into the technical possibilities<br />

of storing energy. The demand for<br />

energy storage systems has risen distinctly<br />

due to the current structural changes in<br />

the power supply industry in Germany and<br />

Europe, i.e. as a result of the increased use<br />

of renewable energy sources (e.g. wind,<br />

photovoltaic applications, and biomass) in<br />

power generation. The primary objective is<br />

therefore to achieve an adequate and balanced<br />

power supply situation despite of<br />

frequent fluctuating power production.<br />

The paper at hand will focus primarily<br />

on heat storage systems that are suitable<br />

for combined heat and power generation<br />

plants. The applied physical and chemical<br />

principles and the associated plant<br />

concepts, as well as the current state of<br />

the art and the technical applications will<br />

be described. The main examples will be<br />

energy storage systems which have been<br />

implemented in regular power plants and<br />

CHP plants. Fundamental criteria that are<br />

of relevance in such heat and energy storage<br />

systems are:<br />

– storage capacity (in MWh),<br />

– charging and discharging capacity<br />

(in MW),<br />

– time response (gradients during load<br />

variations, periods for energy intake and<br />

output, variations over time, etc.),<br />

– storage temperature or temperature differential,<br />

– system efficiency (especially in view of<br />

energy losses),<br />

– environmental compatibility, and<br />

– cost-efficiency.<br />

Energy storage systems/overview<br />

Basically, energy can be stored in electrical,<br />

mechanical, chemical or thermal systems<br />

(Figure 1).<br />

Within the context of the shaping of a<br />

general expert opinion (e.g. in connection<br />

with investment decisions), especially issues<br />

concerning the selection of the best<br />

suitable system in a given case and its<br />

proper dimensioning arise. Besides technical<br />

parameters (capacity, output, efficiency,<br />

etc.), the system’s integration into the<br />

processes of the existing energy supply and<br />

distribution system are of particular importance.<br />

In addition, the aspects of plant<br />

management (availability, flexibility, complexity,<br />

control capability, etc.) and plant<br />

maintenance (repairs, wear and tear, maintenance<br />

requirements, recurrent tests, and<br />

inspections, etc.) need to be taken into account<br />

[3, 4]. In the case of large-scale projects<br />

(e.g. pumped-storage or underground<br />

hydroelectric power plants), the primary<br />

objectives are often related to the official<br />

approval procedures where environmental<br />

aspects (nature conservation, environmental<br />

compatibility, public involvement in the<br />

decision-taking process, etc.) are of special<br />

interest. The procedures in this context often<br />

require a large amount of time and, as<br />

experience has shown, are difficult to predict<br />

in terms of implementation and final<br />

results. And, of course, the basic economic<br />

conditions must be taken into consideration,<br />

i.e. in addition to costs (e.g. of capital<br />

investment, operation, maintenance,<br />

taxes, fees, and other charges), the actual<br />

proceeds need to be looked at as well. Especially<br />

in cases where major capital investments<br />

are involved and where the plants<br />

are expected to have very long service lives<br />

(large-scale plants of life cycles of 40 or 50<br />

years or more), long-range concepts and<br />

adequate fundamental conditions need<br />

to be worked out. The paper in hand will<br />

focus on large-scale stationary energy storage<br />

systems in power plants that are capable<br />

of generating both electrical power and<br />

heat. The following examples have been<br />

chosen to represent various storage technologies<br />

that are in use today.<br />

Electrical energy storage [5, 6]<br />

Accumulators and batteries are used for<br />

storing electrical energy. Different types<br />

of accumulators/batteries are available for<br />

this purpose (lead-acid battery, lead-gel<br />

battery, nickel-metal-hydride battery, lithium-ion<br />

battery, sodium-sulphur battery,<br />

redox-flow battery, etc.). On a global scale,<br />

only very few large-scale electrical energy<br />

storage systems have been implemented<br />

that have capacities of more than <strong>10</strong> MW<br />

(< <strong>10</strong>0 MW). Many ongoing R&D projects<br />

are currently focusing on the development<br />

and testing of different types of accumulators<br />

and systems. In addition to their nu-<br />

69<br />

79

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!