11.03.2014 Views

School of Engineering and Science - Jacobs University

School of Engineering and Science - Jacobs University

School of Engineering and Science - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Author's personal copy<br />

154 B.W. Alex<strong>and</strong>er et al. / Earth <strong>and</strong> Planetary <strong>Science</strong> Letters 283 (2009) 144–155<br />

different depositional environments. In conjunction with the ubiquitous<br />

positive Eu anomalies observed in IFs, the Nd isotopic data<br />

indicate high-temperature hydrothermal alteration <strong>of</strong> mantle-derived<br />

oceanic crust was a dominant control on bulk seawater composition<br />

for much <strong>of</strong> the Archean.<br />

Acknowledgements<br />

This research was funded by Exchange Grant 1327 within the<br />

European <strong>Science</strong> Foundation ArchEnviron Research Networking<br />

Programme. Mark Le Grange is thanked for his assistance with<br />

sampling. The authors would like to gratefully acknowledge the<br />

contributions <strong>of</strong> M. Fischerström <strong>and</strong> H. Schöberg regarding the Sm–<br />

Nd isotopic analyses performed at LIG. This manuscript significantly<br />

benefited from the comments <strong>of</strong> M. Gutjahr <strong>and</strong> one anonymous<br />

reviewer, as well as suggestions by M.L. Delaney.<br />

References<br />

Abbey, S., McLeod, C.R., Liang-Guo, W., 1983. FeR-1, FeR-2, FeR-3, <strong>and</strong> FeR-4 four<br />

Canadian iron-formation samples prepared for use as reference materials. Geol. Sur.<br />

Can. paper 83–119.<br />

Abbott, D.H., H<strong>of</strong>fman, S.E., 1984. Archaean plate tectonics revisited 1. Heat flow,<br />

spreading rate, <strong>and</strong> the age <strong>of</strong> subducting oceanic lithosphere <strong>and</strong> their effects on<br />

the origin <strong>and</strong> evolution <strong>of</strong> continents. Tectonics 3, 429–448.<br />

Alex<strong>and</strong>er, B.W., Bau, M., Andersson, P., Dulski, P., 2008. Continentally-derived solutes in<br />

shallow Archean seawater: rare earth element <strong>and</strong> Nd isotope evidence in iron<br />

formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim. Cosmochim.<br />

Acta 72, 378–394.<br />

Alibert, C., McCulloch, M.T., 1993. Rare earth element <strong>and</strong> Nd isotopic compositions <strong>of</strong><br />

the b<strong>and</strong>ed iron-formations <strong>and</strong> associated shales from Hamersley, Western<br />

Australia. Geochim. Cosmochim. Acta 57, 187–204.<br />

Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: particle association, shale<br />

normalization, <strong>and</strong> Ce-oxidation. Geochim. Cosmochim. Acta 63, 363–372.<br />

Anders, E., Grevesse, N., 1989. Abundances <strong>of</strong> the elements: meteoric <strong>and</strong> solar.<br />

Geochim. Cosmochim. Acta 53, 197–214.<br />

Andersson, P.S., Porcelli, D., Frank, M., Björk, G., Dahlqvist, R., Gustafsson, Ö., 2008.<br />

Neodymium isotopes in seawater from the Barents Sea <strong>and</strong> Fram Strait Arctic–<br />

Atlantic gateways. Geochim. Cosmochim. Acta 72, 2854–2867.<br />

Appel, P.W.U., 1983. Rare earth elements in the early Archaean Isua iron-formation,<br />

West Greenl<strong>and</strong>. Precambrian. Res. 20, 243–258.<br />

Bau, M., 1993. Effects <strong>of</strong> syn- <strong>and</strong> post-depositional processes on the rare-earth element<br />

distribution in Precambrian iron-formations. Eur. J. Mineral. 5, 257–267.<br />

Bau, M., Dulski, P., 1992. Small-scale variations <strong>of</strong> the rare-earth element distribution in<br />

Precambrian iron formations. Eur. J. Mineral. 4, 1429–1433.<br />

Bau, M., Möller, P., 1993. Rare earth element systematics <strong>of</strong> the chemically precipitated<br />

component in Early Precambrian iron formations <strong>and</strong> the evolution <strong>of</strong> the<br />

terrestrial atmosphere–hydrosphere–lithosphere system. Geochim. Cosmochim.<br />

Acta 57, 2239–2249.<br />

Bau, M., Dulski, P., 1996. Distribution <strong>of</strong> yttrium <strong>and</strong> rare-earth elements in the Penge<br />

<strong>and</strong> Kuruman iron-formations, Transvaal Supergroup, South Africa. Precamb. Res.<br />

79, 37–55.<br />

Bau, M., Alex<strong>and</strong>er, B., 2006. Preservation <strong>of</strong> primary REE patterns without Ce anomaly<br />

during dolomitization <strong>of</strong> Mid-Paleoproterozoic limestone <strong>and</strong> the potential reestablishment<br />

<strong>of</strong> marine anoxia immediately after the “Great Oxidation Event”.<br />

S. Afr. J. Geol. 109, 81–86.<br />

Bau, M., Höhndorf, A., Dulski, P., Beukes, N.J., 1997a. Sources <strong>of</strong> rare-earth elements <strong>and</strong><br />

iron in Paleoproterozoic iron-formations from the Transvaal Supergroup, South<br />

Africa: evidence from neodymium isotopes. J. Geol. 105, 121–129.<br />

Bau, M., Möller, P., Dulski, P., 1997b. Yttrium <strong>and</strong> lanthanides in eastern Mediterranean<br />

seawater <strong>and</strong> their fractionation during redox-cycling. Mar. Chem. 56, 123–131.<br />

Beukes, N.J., 1983. Palaeoenvironmental setting <strong>of</strong> iron-formations in the depositional<br />

basin <strong>of</strong> the Transvaal Supergroup, South Africa, in: Trendall, A.F., Morris, R.C. (Eds.),<br />

Iron-formation Facts <strong>and</strong> Problems, 131–198, Vol. 6 Developments in Precambrian<br />

Geology (Ed. B.F. Windley), Elsevier, Amsterdam.<br />

Beukes, N.J., Cairncross, B., 1991. A lithostratigraphic sedimentological reference pr<strong>of</strong>ile<br />

for the late Archaean Mozaan Group, Pongola Sequence: application to sequence<br />

stratigraphy <strong>and</strong> correlation with the Witwatersr<strong>and</strong> Supergroup. S. Afr. J. Geol. 94,<br />

44–69.<br />

Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., 2004. Characterisation<br />

<strong>of</strong> early Archaean chemical sediments by trace element signatures. Earth<br />

Planet. Sci. Lett. 222, 43–60.<br />

Broecker, W.S., Peng, T.H., 1982. Tracers in the Sea. Eldigio Press, New York.<br />

Byrne, R.H., Kim, K., 1990. Rare earth element scavenging in seawater. Geochim.<br />

Cosmochim. Acta 54, 2645–2656.<br />

Byron, C.L., Barton, J.M., 1990. The setting <strong>of</strong> mineralization in a portion <strong>of</strong> the Eersteling<br />

goldfield, Pietersburg granite–greenstone terrane, South Africa. S. Afr. J. Geol. 93,<br />

463–472.<br />

Cantrell, K.J., Byrne, R.H., 1987. Rare earth element complexation by carbonate <strong>and</strong><br />

oxalate ions. Geochim. Cosmochim. Acta 51, 597–605.<br />

Condie, K.C., 1993. Chemical composition <strong>and</strong> evolution <strong>of</strong> the upper continental crust:<br />

contrasting results from surface samples <strong>and</strong> shales. Chem. Geol. 104, 1–37.<br />

Danielson, A., Möller, P., Dulski, P., 1992. The europium anomalies in b<strong>and</strong>ed iron<br />

formations <strong>and</strong> the thermal history <strong>of</strong> the oceanic crust. Chem. Geol. 97, 89–100.<br />

DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations <strong>and</strong> petrogenetic models.<br />

Geophys. Res. Lett. 3, 249–252.<br />

Derry, L.A., <strong>Jacobs</strong>en, S.B., 1990. The chemical evolution <strong>of</strong> Precambrian seawater:<br />

Evidence from rare earth elements in b<strong>and</strong>ed iron formations. Geochim.<br />

Cosmochim. Acta 54, 2965–2977.<br />

De Wit, M.J., 1991. Archaean greenstone belt tectonism <strong>and</strong> basin development: some<br />

insights from the Barberton <strong>and</strong> Pietersburg greenstone belts, Kaapvaal Craton,<br />

South Africa. J. Afr. Earth Sci. 13, 45–63.<br />

De Wit, M.J., Jones, M.G., Buchanan, D.L., 1992. The geology <strong>and</strong> tectonic evolution <strong>of</strong> the<br />

Pietersburg Greenstone Belt, South Africa. Precambrian Res. 55, 123–153.<br />

De Wit, M.J., Armstrong, F.L., Kamo, S.L., Erlank, A.J., 1993. Gold-bearing sediments in the<br />

Pietersburg greenstone belt: age equivalents <strong>of</strong> the Witwatewrsr<strong>and</strong> Supergroup<br />

sediments. S. Afr. Econ. Geol. 88, 1242–1252.<br />

Dulski, P., 2001. Reference materials for geochemical studies: new analytical data by<br />

ICP-MS <strong>and</strong> critical discussion <strong>of</strong> reference values. Geost<strong>and</strong>. Newsl. 25, 87–125.<br />

Eglington, B.M., Talma, A.S., Marais, S., Matthews, P.E., Dixon, J.G.P., 2003. Isotopic<br />

composition <strong>of</strong> Pongola Supergroup limestones from the Buffalo River gorge, South<br />

Africa: constraints on their regional depositional setting. S. African J. Geol.106,1–10.<br />

Frank, M., 2002. Radiogenic isotopes: tracers <strong>of</strong> past ocean circulation <strong>and</strong> erosional<br />

input. Rev. Geophys. 40, 1–38.<br />

Frei, R., Polat, A., 2007. Source heterogeneity for the major components <strong>of</strong> ~3.7 Ga<br />

B<strong>and</strong>ed Iron Formations (Isua Greenstone Belt, Western Greenl<strong>and</strong>): tracing the<br />

nature <strong>of</strong> interacting water masses in IF formation. Earth Planet. Sci. Lett. 253,<br />

266–281.<br />

Frei, R., Bridgewater, D., Rosing, M., Stecher, O., 1999. Controversial Pb–Pb <strong>and</strong> Sm–Nd<br />

isotope results in the early Archean Isua (West Greenl<strong>and</strong>) oxide iron formation:<br />

preservation <strong>of</strong> primary signatures versus secondary disturbances. Geochim.<br />

Cosmochim. Acta 63, 473–488.<br />

Frei, R., Dahl, P.S., Duke, E.F., Frei, K.M., Hansen, T.R., Fr<strong>and</strong>sson, M.M., Jensen, L.A., 2007.<br />

Trace element <strong>and</strong> isotopic characterization <strong>of</strong> Neoarchean <strong>and</strong> Paleoproterozoic<br />

iron formations in the Black Hills (South Dakota, USA): assessment <strong>of</strong> chemical<br />

change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise <strong>of</strong><br />

atmospheric oxygen. Precam. Res. 162, 441–474.<br />

Fryer, B.J., Fyfe, W.S., Kerrich, R., 1979. Archaean volcanogenic oceans. Chem. Geol. 24,<br />

25–33.<br />

German, C.R., Klinkhammer, G.P., Edmond, J.M., Elderfield, H., Mitra, A., 1990.<br />

Hydrothermal scavenging <strong>of</strong> rare-earth elements in the ocean. Nature 345, 516–518.<br />

Goldstein, S.L., Hemming, S.R., 2003. In: Elderfield, H. (Ed.), Long-lived Isotopic Tracers<br />

in Oceanography, Paleoceanography <strong>and</strong> Ice Sheet Dynamics. Treatise on<br />

Geochemistry, Vol. 6. Elsevier-Pergamon, Oxford, pp. 453–489.<br />

Grotzinger, J.P., 1989. Facies <strong>and</strong> evolution <strong>of</strong> Precambrian carbonate depositional<br />

systems: emergence <strong>of</strong> the modern platform archetype. Controls on Carbonate<br />

Platform <strong>and</strong> Basin Development, SEPM (Soc. Econ. Paleont. Mineral). Spec. Pub.,<br />

vol. 44, pp. 79–106.<br />

Gutjahr, M., Frank, M., Stirling, C.H., Keigwin, L.D., Halliday, A.N., 2008. Tracing the Nd<br />

isotope evolution <strong>of</strong> North Atlantic Deep <strong>and</strong> Intermediate Waters in the western<br />

North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. Earth<br />

Planet. Sci. Lett. 266, 61–77.<br />

Gutzmer, J., Nhleko, N., Beukes, N.J., Pickard, A., Barley, M.E., 1999. Geochemistry <strong>and</strong> ion<br />

microprobe (SHRIMP) age <strong>of</strong> a quartz porphyry sill in the Mozaan Group <strong>of</strong> the<br />

Pongola Supergoup: implications for the Pongola <strong>and</strong> Witwatersr<strong>and</strong> Supergroups.<br />

S. Afr. J. Geol. 102, 139–146.<br />

Hegner, E., Kröner, A., H<strong>of</strong>mann, A.W., 1984. Age <strong>and</strong> isotope geochemistry <strong>of</strong> the<br />

Archaean Pongola <strong>and</strong> Usushwana suites in Swazil<strong>and</strong>, southern Africa: a case for<br />

crustal contamination <strong>of</strong> mantle-derived magma. Earth Planet. Sci. Lett. 70,<br />

267–279.<br />

Hegner, E., Kröner, A., H<strong>of</strong>mann, A.W., 1994. A precise U–Pb zircon age for the Archaean<br />

Pongola Supergroup volcanics in Swazil<strong>and</strong>. J. Afr. Earth Sci. 18, 339–341.<br />

Holl<strong>and</strong>, H.H., 1984. The Chemical Evolution <strong>of</strong> the Atmosphere <strong>and</strong> the Oceans.<br />

Princeton Univ. Press.<br />

<strong>Jacobs</strong>en, S.B., Pimentel-Klose, M.R., 1988a. A Nd isotopic study <strong>of</strong> the Hamersley <strong>and</strong><br />

Michipicoten b<strong>and</strong>ed iron formations: the source <strong>of</strong> REE <strong>and</strong> Fe in Archean oceans.<br />

Earth Planet. Sci. Lett. 87, 29–44.<br />

<strong>Jacobs</strong>en, S.B., Pimentel-Klose, M.R., 1988b. Nd isotopic variations in Precambrian<br />

b<strong>and</strong>ed iron formations. Geophys. Res. Lett. 15, 393–396.<br />

Je<strong>and</strong>el, C., Bishop, K., Zindler, A., 1995. Exchange <strong>of</strong> neodymium <strong>and</strong> its isotopes<br />

between seawater <strong>and</strong> small <strong>and</strong> large particles in the Sargasso Sea. Geochim.<br />

Cosmochim. Acta 59, 535–547.<br />

Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., H<strong>of</strong>mann, A.W., 2005. GeoReM: A<br />

new geochemical database for reference materials <strong>and</strong> isotopic st<strong>and</strong>ards.<br />

Geost<strong>and</strong>. Geoanal. Res. 29, 333–338.<br />

Jones, M.G., 1990. The geology <strong>of</strong> the Mt Mare area, Pietersburg greenstone belt, South<br />

Africa. Ph.D. thesis, Imperial College, Univ. London.<br />

Kamber, B.S., Webb, G.E., 2001. The geochemistry <strong>of</strong> late Archaean microbial carbonate:<br />

Implications for ocean chemistry <strong>and</strong> continental erosion history. Geochim.<br />

Cosmochim. Acta 65, 2509–2525.<br />

Klein, C., Beukes, N.J., 1989. Geochemistry <strong>and</strong> sedimentology <strong>of</strong> a facies transition from<br />

limestone to iron-formation in the Early Proterozoic Transvaal Supergroup, South<br />

Africa. Econ. Geol. 84, 1733–1774.<br />

Kröner, A., Jaeckl, P., Br<strong>and</strong>l, G., 2000. Single zircon ages for felsic to intermediate rocks<br />

from the Pietersburg <strong>and</strong> Giyani greenstone belts <strong>and</strong> bordering granitoid<br />

orthogneisses, northern Kaapvaal Craton, South Africa. J. Afr. Earth Sci. 30, 773–793.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!