07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

- 85 -<br />

Influence of Atmospheric Forcing <strong>on</strong> Simulati<strong>on</strong>s with a General<br />

Circulati<strong>on</strong> Model of the Baltic Sea<br />

Frank Janssen, Torsten Seifert<br />

Baltic Sea Research Institute, Seestrasse 15, D-18119 Rostock, Germany, frank.janssen@io-warnemuende.de<br />

1. Introducti<strong>on</strong><br />

Numerical models play an important role in enhancing our<br />

knowledge of the functi<strong>on</strong>ing of the Baltic Sea system. A<br />

hierarchy of models from simple box-models to<br />

sophisticated 3D general circulati<strong>on</strong> models has been<br />

applied to all kinds of problems and the influence of the<br />

chosen model type <strong>on</strong> the results has often been discussed.<br />

But irrespective of the model type selected the results<br />

depend str<strong>on</strong>gly <strong>on</strong> the upper and lateral boundary<br />

c<strong>on</strong>diti<strong>on</strong>s. This study deals with the influence of the upper<br />

boundary c<strong>on</strong>diti<strong>on</strong>, i.e. the atmospheric forcing, <strong>on</strong> multi<br />

year simulati<strong>on</strong>s of the Baltic Sea physical envir<strong>on</strong>ment with<br />

a 3D circulati<strong>on</strong> model. Four atmospheric datasets have been<br />

selected and the ocean model is forced with the different<br />

atmospheric data during the 10 year simulati<strong>on</strong> period 1981-<br />

1990. An intercomparis<strong>on</strong> of the simulati<strong>on</strong> results as well<br />

as a validati<strong>on</strong> with observati<strong>on</strong>s is carried out.<br />

2. Material and Methods<br />

From the several available atmospheric datasets which cover<br />

the Baltic four have been selected for this study. Two of<br />

them (ERA-15, NCEP) are extracted from global re-analysis<br />

datasets. A regi<strong>on</strong>alized versi<strong>on</strong> of the ERA-15 data comes<br />

from the regi<strong>on</strong>al atmospheric REMO and the fourth<br />

candidate is the dataset compiled within the <strong>BALTEX</strong><br />

project.<br />

The ocean model is the general circulati<strong>on</strong> model MOM3<br />

adapted to the Baltic Sea with a horiz<strong>on</strong>tal resoluti<strong>on</strong> of<br />

3’ x 6’ and 77 levels.<br />

3. Discussi<strong>on</strong><br />

Figure 1 shows a comparis<strong>on</strong> of 2m air temperature and<br />

wind speed in the central Baltic Sea. Both datasets have a<br />

pr<strong>on</strong>ounced annual cycle in wind speed but the REMO data<br />

are more than 1m/s higher throughout the year. In c<strong>on</strong>trast to<br />

the wind speed the air temperature is significantly lower in<br />

the REMO dataset with the largest differences during winter.<br />

[m/s]<br />

S<br />

W<br />

]<br />

[°C<br />

T AIR<br />

10<br />

5<br />

2<br />

1<br />

0<br />

15<br />

10<br />

5<br />

-2 0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

REMO<br />

ERA-15<br />

REMO - ERA-15<br />

mean annual wind speed<br />

mean annual air temperature<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

time [m<strong>on</strong>th]<br />

Figure 1: Mean annual cycle during the period 1980-1990<br />

of wind speed and air temperature in the central Baltic Sea<br />

(57°N, 20°E) from two different forcing datasets.<br />

Both atmospheric variables c<strong>on</strong>tribute to the oceanatmosphere<br />

heat fluxes and therefore a str<strong>on</strong>g impact <strong>on</strong> the<br />

ocean surface can be anticipated. The salinity distributi<strong>on</strong>s<br />

in figure 2 clearly indicate that the influence is not<br />

c<strong>on</strong>fined to the ocean surface layer.<br />

y sa _ y era15_bio_hv_p2c<br />

p a _J0 pos o 5 8 , 0 3<br />

ra15_bio_hv_p2c era15_bio_hv_p2c<br />

remo_bio_hv_p2c remo_bio_hv_<br />

12<br />

12<br />

12<br />

12<br />

50<br />

12<br />

12<br />

50<br />

50<br />

50<br />

50<br />

50 11<br />

11<br />

11<br />

11<br />

100<br />

100<br />

10 100 10 100<br />

10 100<br />

10<br />

150<br />

150 9<br />

150 9<br />

150<br />

9<br />

150 9<br />

200<br />

200<br />

8<br />

7<br />

200<br />

8<br />

7<br />

200<br />

8<br />

7<br />

200<br />

8<br />

7<br />

83 84 80 85 81 86 82 87 83 88 89 84 90 85 80 86 81 87 82 88 83 89 84 90 85<br />

80<br />

86<br />

80 81<br />

87<br />

82<br />

88<br />

83<br />

89<br />

84<br />

90<br />

85 86 80 87 81 88 82 89 83 90 84 85 80 86 81 87<br />

depth [m]<br />

depth [m]<br />

remo_bio_hv_p2c remo_bio_hv_p2c - era15_bio_hv_p2c - era15_bio_hv_p2c<br />

depth [m]<br />

depth [m]<br />

[psu]<br />

S [psu]<br />

[psu]<br />

S [psu]<br />

hv_p2c - era15_bio_hv_p2c<br />

2<br />

[psu]<br />

depth [m]<br />

50<br />

50<br />

1<br />

-0.2<br />

1<br />

-0.2<br />

1<br />

-0.2<br />

100<br />

100<br />

0<br />

-0.4<br />

0<br />

-0.4<br />

0<br />

-0.4<br />

150<br />

150<br />

-0.6<br />

-0.6<br />

-0.6<br />

200<br />

200<br />

-1<br />

-0.8<br />

-1<br />

-0.8 -1<br />

-0.8<br />

-2<br />

-2<br />

83 84 80 85 81 86 82 87 83 88 89 84 85 86 87 88 89 90<br />

80 81 -2 82 83 84 85 86 87<br />

time [a] time 90 85 86 87 88 89 90<br />

80 [a] 81 82 83 84 85 80 86 81 8782 888389849085 86808781 -2<br />

83 84 85 86 87 88 89 90<br />

80 81 82 83 84 85 86 87 88 8882 89 8983 90 9084<br />

85 86 87<br />

time [a]<br />

80 81 82 83 84 85 86 87 88 89 90<br />

time [a]<br />

time 80 [a] 81<br />

time [a]<br />

time [a]<br />

80 81<br />

[psu]<br />

2<br />

depth [m]<br />

[psu]<br />

∆ S<br />

bott<br />

2<br />

[psu]<br />

depth [m]<br />

S [psu]<br />

[psu]<br />

∆ S<br />

bott<br />

Figure 2. Upper panel: Salinity in the central Gotland<br />

Basin (BMP Stati<strong>on</strong> J01) from two model runs. Lower<br />

panel: Difference between the two simulati<strong>on</strong>s.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

Preliminary model results show that the atmospheric<br />

forcing has a str<strong>on</strong>g impact <strong>on</strong> the quality of the<br />

simulati<strong>on</strong>. This impact affects not <strong>on</strong>ly the upper layer<br />

but the whole system. A comprehensive analysis of the<br />

forcing is therefore needed in order to decide which<br />

properties of a forcing dataset are reliable before the<br />

parameterizati<strong>on</strong>s of the ocean model are re-calibrated.<br />

Furthermore, not <strong>on</strong>ly the differences between the type of<br />

the used models should be discussed when model results<br />

are compared. Differences in the forcing data should be<br />

discussed with the same emphasis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!