07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In the case of an ideal fit, the correlati<strong>on</strong> coefficient R<br />

between ln δAER (λ) and ln λ should be equal to minus <strong>on</strong>e.<br />

Lower absolute values, ⏐R⏐ < 1, indicate deviati<strong>on</strong>s from<br />

linearity or errors in the determinati<strong>on</strong> of aerosol optical<br />

thicknesses δAER (λ) or both. Figure 1 gives a visual<br />

impressi<strong>on</strong> of all 1602 correlati<strong>on</strong> coefficients R for summer<br />

2002.<br />

In 98.5 % of the c<strong>on</strong>sidered cases (1579 series), the<br />

correlati<strong>on</strong> ⏐R⏐was str<strong>on</strong>ger than 0.97. Only in the rest of<br />

23 of cases the correlati<strong>on</strong> was 0.93–97%. High correlati<strong>on</strong>s<br />

indicate, <strong>on</strong> <strong>on</strong>e hand, the applicability of the Ångström<br />

formula at TOravere in summer 2002, and <strong>on</strong> the other, the<br />

high accuracy of measurements performed by the<br />

AERONET system.<br />

The Ångström wavelength exp<strong>on</strong>ent α, varying in the range<br />

0.54–1.96 (Fig. 2), had m<strong>on</strong>thly mean values α = 1.45, 1.48<br />

and 1.42, respectively, in June, July and August. The mean<br />

for all three m<strong>on</strong>ths was α = 1.45, which exceeds<br />

Ångström’s classic value of α = 1.3.<br />

alpha<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

Ångström alpha, 340-1020 nm, summer 2002, Toravere,<br />

Est<strong>on</strong>ia<br />

0.00<br />

June July August<br />

151 182 213 244<br />

Julian day<br />

Figure 2. Ångström wavelength exp<strong>on</strong>ent α in summer<br />

2002 at Toravere, 1602 points shown.<br />

The Ångström turbidity coefficient β, found according to Eq<br />

(4), varied during summer 2002 between 0.018 and 0.602.<br />

The mean β values from June to August were 0.053, 0.087<br />

and 0.132. The total summer mean was β = 0.0907. As seen<br />

in Fig. 3, higher peaks occurred in July and August,<br />

especially in the sec<strong>on</strong>d half of August. Apparently, these<br />

peaks were related to extended forest and bog fires in<br />

Est<strong>on</strong>ia and nearby Russian territories.<br />

beta<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

Ångström beta, summer 2002, Toravere, Est<strong>on</strong>ia<br />

151<br />

June<br />

182<br />

July<br />

Julian day<br />

213<br />

August<br />

244<br />

Figure 3. Temporal variati<strong>on</strong> of the Ångström turbidity<br />

coefficient β in summer 2002 at Toravere.<br />

Deviati<strong>on</strong> from the Ångström formula occurs <strong>on</strong> very clear<br />

days, i.e. in cases of very low AOT. As seen in Fig. 4, all<br />

values of lower correlati<strong>on</strong>, ⏐R⏐< 0.97 take place when the<br />

AOT(500 nm) < 0.2. On these days spectral behaviour of<br />

AOT(λ) often is anomalous in regi<strong>on</strong> 670–1020 nm and<br />

does not fit the Ångström formula. This may be the result of<br />

several factors: 1) errors in the AOD observati<strong>on</strong>s<br />

themselves; 2) uncertainties in estimating light absorpti<strong>on</strong><br />

by water vapor and oz<strong>on</strong>e: and 3) unique aerosol size<br />

distributi<strong>on</strong>s that are not approximated by a power law<br />

- 83 -<br />

(Junge) distributi<strong>on</strong>. In the cases of greater turbidity, when<br />

the AOT(500) > 0.2, the Ångström formula fits well,<br />

correlati<strong>on</strong> ⏐R⏐ > 0.97.<br />

R<br />

Correlati<strong>on</strong> coefficients for the Ångström formula, 340-1020<br />

nm, summer 2002, Toravere, Est<strong>on</strong>ia<br />

-1.01<br />

-1.00<br />

-0.99<br />

-0.98<br />

-0.97<br />

-0.96<br />

-0.95<br />

-0.94<br />

-0.93<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4<br />

AOT(500 nm)<br />

Figure 4. Correlati<strong>on</strong> coefficients R versus AOT (500<br />

nm). The Ångström formula fits better at greater turbidity.<br />

4. C<strong>on</strong>clusi<strong>on</strong><br />

Analysis of 1602 observati<strong>on</strong>s made by the AERONET<br />

sunphotometer at Toravere in summer 2002 proved that<br />

spectral behaviour of aerosol optical thicknesses can be<br />

expressed by the Ångström formula. M<strong>on</strong>thly mean values<br />

of the Ångström wavelength exp<strong>on</strong>ent were: α = 1.42–<br />

1.48, and of the turbidity coefficient: β = 0.053–0.132.<br />

The Ångström formula fits better at greater turbidity.<br />

Acknowledgements<br />

This investigati<strong>on</strong> was supported by nati<strong>on</strong>al grants No.<br />

4140 and No 5857 of the Est<strong>on</strong>ian Science Foundati<strong>on</strong>.<br />

The AERONET team and the Est<strong>on</strong>ian Principal<br />

Investigator Dr. O. Kärner, together with Dr. M. Sulev, are<br />

highly appreciated for installati<strong>on</strong> and maintainance of the<br />

device, and making accessible the unique observati<strong>on</strong><br />

data.<br />

References<br />

Ångström, A., On the atmospheric transmissi<strong>on</strong> of sun<br />

radiati<strong>on</strong> and <strong>on</strong> dust in the air. Geografiska annaler,<br />

11, pp. 156–166, 1929.<br />

Ångström, A., On the atmospheric transmissi<strong>on</strong> of sun<br />

radiati<strong>on</strong>. II. Geografiska annaler, 12, pp. 130–159,<br />

1930.<br />

Ångström, A., Techniques of determing the turbidity of<br />

the atmosphere. Tellus XIII, 2, pp. 214–223, 1961.<br />

Ångström, A., The parameters of atmospheric turbidity.<br />

Tellus XVI, 1, pp. 64–75, 1964.<br />

Junge, Chr., The size distributi<strong>on</strong> and aging of natural<br />

aerosols as determined from electrical and optical data<br />

<strong>on</strong> the atmosphere. J. Meteor. 12, pp. 13–25, 1955.<br />

Martinez-Lozano, J.A., Utrillas, M.P., Cachorro, V.E., The<br />

parameterizati<strong>on</strong> of the aerosol optical depth using the<br />

Ångström power law. Solar Energy. 63, pp. 303–311,<br />

1998.<br />

Molineaux, B., Ineichen, P., Impact of Pinatubo aerosols<br />

<strong>on</strong> the seas<strong>on</strong>al trends of global, direct and diffuse<br />

irradiance in two northern mid-latitudes. Solar Energy.<br />

58, 1–3, pp. 91–101, 1996.<br />

Shifrin, K.S., Simple relati<strong>on</strong>ships for the Ångström<br />

parameter of disperse systems. Appl. Opt. 34, 21, pp.<br />

4480–4485, 1995.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!