07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The subsurface flow calculati<strong>on</strong> is followed by the 2-D<br />

overland flow comp<strong>on</strong>ent.<br />

3. Numerical Experiment<br />

The main aim of the numerical experiment is to show the<br />

effects of surface and subsurface lateral flows <strong>on</strong> a local<br />

water budget in hilly permafrost regi<strong>on</strong>s. Therefore, we set<br />

up a simple catchment represented by a single slope<br />

inclining in <strong>on</strong>e directi<strong>on</strong> <strong>on</strong>ly. The catchment follows a real<br />

slope in the CEOP Tibet observati<strong>on</strong> area. The model is run<br />

using the forcing data provided by the CEOP Tibet 2002<br />

observati<strong>on</strong>. The simulati<strong>on</strong> period is about 40 days starting<br />

<strong>on</strong> April 1 st , when soil is frozen up to the surface al<strong>on</strong>g the<br />

whole slope. Due to the lack of the observati<strong>on</strong> of soil<br />

moisture and temperature, we apply hypothetical initial<br />

c<strong>on</strong>diti<strong>on</strong>s. We set up two scenarios. One scenario (C1)<br />

starts with homogeneous initial c<strong>on</strong>diti<strong>on</strong>s al<strong>on</strong>g the slope<br />

represented by water c<strong>on</strong>tent at saturati<strong>on</strong> (ice + liquid). The<br />

sec<strong>on</strong>d scenario (C2) starts with heterogeneous initial<br />

c<strong>on</strong>diti<strong>on</strong>s represented by different soil water c<strong>on</strong>tent al<strong>on</strong>g<br />

the slope, being at saturati<strong>on</strong> at the bottom and gradually<br />

decreasing upward the slope. Forcing data and all of the<br />

parameters associated with soil and vegetati<strong>on</strong> are<br />

homogeneous over the catchment and are identical for both<br />

scenarios. The results are shown in Figure 1 – 3.<br />

vwc (m 3 m -3 )<br />

vwc (m 3 m -3 )<br />

Soil moisture - C1 scenario<br />

0.5<br />

2<br />

0.4<br />

0.3<br />

1<br />

0.2<br />

0.1<br />

0.0<br />

0<br />

Soil moisture - C2 scenario<br />

0.5<br />

0<br />

0.4<br />

0.3<br />

1<br />

0.2<br />

0.1<br />

0.0<br />

2<br />

4/1 4/6 4/11 4/16 4/21 4/26 5/1 5/6 5/11<br />

Figure 1. Volumetric water c<strong>on</strong>tent (liquid + ice) in the<br />

surface layer (full lines) and the root z<strong>on</strong>e (dash-dotted<br />

lines) at the top (bold lines) and at the bottom (thin lines) of<br />

the slope. The thickness of the surface layer is 4 cm and of<br />

the root z<strong>on</strong>e 16 cm. The top chart – homogeneous and the<br />

bottom <strong>on</strong>e – heterogeneous initial c<strong>on</strong>diti<strong>on</strong>s.<br />

4. Discussi<strong>on</strong><br />

top - surface<br />

top - root<br />

Precipitati<strong>on</strong> (mmh -1 ) Precipitati<strong>on</strong> (mmh -1 )<br />

bottom - surface<br />

bottom - root<br />

The results are c<strong>on</strong>sistent with the theory of the permafrost<br />

hydrologic processes introduced in the previous secti<strong>on</strong>s. It<br />

suggests, that the model simulates the permafrost hydrologic<br />

processes realistically.<br />

C1 scenario reveals a str<strong>on</strong>g impact of lateral flow <strong>on</strong><br />

surface wetness. At the bottom, soil near the surface stays<br />

saturated, while the top of the slope is gradually being dried<br />

(Fig. 1). C<strong>on</strong>sequently, thawing is faster at the top than at<br />

the bottom (Fig. 2). In additi<strong>on</strong>, the wet bottom produces<br />

higher latent heat flux and very low sensible heat flux (Fig.<br />

3). The extremely low sensible heat flux during the first 20<br />

days of the simulati<strong>on</strong> is caused by frozen surface covered<br />

with an ice film. C2 scenario dem<strong>on</strong>strates effect of initial<br />

c<strong>on</strong>diti<strong>on</strong>s prior thawing. Because there is <strong>on</strong>ly a little soil<br />

ice c<strong>on</strong>tent at the top of the slope, there is no moisture<br />

available for lateral flow after thawing. In additi<strong>on</strong>, <strong>on</strong>ly<br />

- 99 -<br />

little rain falls during the simulated period and thus soil<br />

moisture c<strong>on</strong>tent is lowering even at the bottom of the<br />

slope. The results for the bottom in C2 are very similar to<br />

the results at the top in C1 because the initial state at the<br />

bottom in C2 is the same as at the top in C1 and because<br />

of the lack of water supply in C2 (little rain, little moisture<br />

in upper part of the slope).<br />

thawed depth (m)<br />

Active layer evoluti<strong>on</strong><br />

0.0<br />

0.2<br />

0.4 top - C2<br />

top - C1<br />

0.6<br />

bottom - C2<br />

0.8<br />

bottom - C1<br />

1.0<br />

4/1 4/6 4/11 4/16 4/21 4/26 5/1 5/6 5/11<br />

Figure 2. Evoluti<strong>on</strong> of the depth of active layer over<br />

time at the top of the slope (bold lines) and the bottom of<br />

the slope (thin lines). Full lines show C2 scenario and<br />

dash-dotted lines stand for scenario C1.<br />

LHF (Wm -2 )<br />

SHF (Wm -2 )<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Latent heat flux - daily average<br />

Sensible heat flux - daily average<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

4/1 4/6 4/11 4/16 4/21 4/26 5/1 5/6 5/11<br />

top - C2<br />

top - C1<br />

bottom - C2<br />

bottom - C1<br />

Figure 3. Daily averages of latent (top chart) and<br />

sensible (bottom chart) heat fluxes. The lines have the<br />

same meaning as in Figure 2.<br />

References<br />

Ishidaira H., T. Koike, M. Lu, and N. Hirose,<br />

Development of a 2-D soil model for heat and water<br />

transfer in permafrost regi<strong>on</strong>s, Annual J. of Hydraulic<br />

Eng., JSCE, 42, pp. 133-138, 1998, in Japanese.<br />

Koike, T., and P. Koudelova: Introducing the lateral<br />

surface flow into a land surface scheme, Proc. of 2003<br />

IUGG c<strong>on</strong>ference, Sapporo, pp. A116, 2003<br />

Li, S-X., and T. Koike, Frozen soil parameterizati<strong>on</strong> in<br />

SiB2 and its validati<strong>on</strong> with GAME-Tibet<br />

observati<strong>on</strong>s, Cold Regi<strong>on</strong> Science and Technology,<br />

36, pp. 165-182, 2003<br />

Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C.<br />

B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and<br />

L. Bounoua, A revised land surface parameterizati<strong>on</strong><br />

(SiB2) for atmospheric GCMs. Part I: Model<br />

Formulati<strong>on</strong>, J. Climate, 9, pp. 676-705, 1996

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!