07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

- 122 -<br />

Interannual Changes in Heavy Precipitati<strong>on</strong> in Europe from Stati<strong>on</strong> and<br />

NWP Data<br />

Olga Zolina 1 , Alicie Kapala 1 , Clemens Simmer 1 , Sergey Gulev 2<br />

1 Meteorologisches Institut, Universitaet B<strong>on</strong>n, 53121 auf dem Huegel 20, B<strong>on</strong>n, Germany, olga.zolina@uni-b<strong>on</strong>n.de,<br />

2 P.P.Shirshov Institute of Oceanology, Moscow, Russia, gul@sail.msk.ru,<br />

1. Introducti<strong>on</strong><br />

We present an analysis of the interannual to decadal<br />

variability in heavy European precipitati<strong>on</strong> using stati<strong>on</strong><br />

daily data as well as precipitati<strong>on</strong> estimates from different<br />

reanalyses. The main questi<strong>on</strong> to address is the robustness of<br />

the variability patterns in different numerical weather<br />

predicti<strong>on</strong> (NWP) data sets and their comparability with<br />

those derived from the stati<strong>on</strong> data.<br />

2. Data<br />

Stati<strong>on</strong> data c<strong>on</strong>sist of inputs from different collecti<strong>on</strong>s<br />

(Royal Netherlands Meteorological Institute, Nati<strong>on</strong>al<br />

Climate Data Center, German Metoffice, Russian Metoffice)<br />

and covers the 20 th century period. Altogether we assembled<br />

more than 2000 stati<strong>on</strong>s, roughly 500 of which provide quite<br />

a dense coverage of the last five decades. Reanalyses data<br />

were taken from the four major reanalyses (NCEP/NCAR<br />

Reanalysis versi<strong>on</strong>s 1 and 2, ECMWF Reanalyses ERA15<br />

and ERA40). These data cover the periods from 15 to 55<br />

years and overlap each other during the period 1979-1993.<br />

Figure 1 shows spatial distributi<strong>on</strong> and periods of<br />

observati<strong>on</strong>s at European stati<strong>on</strong>s used in this study.<br />

-20 -10 0 10 20 30 40 50 60<br />

70<br />

70<br />

60<br />

50<br />

40<br />

30<br />

30<br />

-20 -10 0 10 20 30 40 50 60<br />

0 0 to - 30 30<br />

30 - to 50 50<br />

50 - to 100<br />

100 - to 200 200years<br />

Figure 1: Spatial distributi<strong>on</strong> of European stati<strong>on</strong>s used in<br />

this study with corresp<strong>on</strong>ding observati<strong>on</strong>al periods.<br />

3. Methods<br />

Methods of data preprocessing included the quality c<strong>on</strong>trol,<br />

homogenizati<strong>on</strong> and co-locati<strong>on</strong> of data from different<br />

sources. Analysis of precipitati<strong>on</strong> extremes is presented in<br />

terms of the parameters of the probability density functi<strong>on</strong>s<br />

as well as different percentiles of precipitati<strong>on</strong> distributi<strong>on</strong>s.<br />

Occurrences of heavy precipitati<strong>on</strong> were quantified through<br />

the scale and shape parameters of the gamma-distributi<strong>on</strong>,<br />

whose applicability has been tested using the k-s test. From<br />

the distributi<strong>on</strong> characteristics we derived the other<br />

statistical parameters (percentiles, return values, etc.).<br />

60<br />

50<br />

40<br />

4. Results<br />

The mean statistical characteristics exhibit patterns which<br />

are qualitatively comparable to each other, but show quite<br />

str<strong>on</strong>g quantitative differences. The highest probability of<br />

extreme and heavy precipitati<strong>on</strong> (the largest shape<br />

parameter) occurs in ERA40 while the lowest probability<br />

is exhibited by ERA15. The analysis of linear trends in<br />

ERA40 and NCEP1 for a 43-year period shows that<br />

despite the similarity of the trends in mean seas<strong>on</strong>al<br />

precipitati<strong>on</strong>, trends in shape and scale parameters may<br />

exhibit different signs. This holds for the winter shape<br />

parameter in Eastern Europe and for the summer scale<br />

parameter in the Alpine regi<strong>on</strong>. In Figure 2 we present, as<br />

example, the winter trend patterns in the shape parameter<br />

derived from ERA40 and NCEP1 reanalyses.<br />

-20 -10 0 10 20 30 40 50 60<br />

70<br />

70<br />

60<br />

50<br />

40<br />

30<br />

30<br />

-20 -10 0 10 20 30 40 50 60<br />

-20 -10 0 10 20 30 40 50 60<br />

70<br />

70<br />

60<br />

50<br />

40<br />

(A)<br />

(B)<br />

ERA40<br />

JFM<br />

NCEP1<br />

JFM<br />

30<br />

30<br />

-20 -10 0 10 20 30 40 50 60<br />

Figure 2. Linear trends in the shape parameter (per 100<br />

years) derived from ERA40(A) and NCEP1 (B) reanalyses<br />

for winter for the period 1958-2001. Grey shading<br />

indicates 95% significance (Student t-test).<br />

Both NWP products show significantly positive trends<br />

over Western Scandinavia, Northern United Kingdom and<br />

Caucasus and significantly negative trends in Western<br />

c<strong>on</strong>tinental Europe for the shape parameter. At the same<br />

time trends over the Central and Eastern European regi<strong>on</strong>s<br />

exhibit drastic differences between ERA40 and NCEP1<br />

reanalyses. ERA40 shows significantly positive trends<br />

here, while NCEP1 diagnoses negative tendencies over the<br />

last 4 decades.<br />

Comparability of the interannual variability patterns was<br />

analysed in terms of comm<strong>on</strong> EOFs. For both shape and<br />

60<br />

50<br />

40<br />

60<br />

50<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!