07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

shortening of the winter seas<strong>on</strong>s by 16 days was calculated.<br />

All the l<strong>on</strong>g-term tendencies observed in the ice periods of<br />

Est<strong>on</strong>ian large lakes are in a good accordance with the trend<br />

of increasing mean air temperature during winter and early<br />

spring climatic seas<strong>on</strong>s, and with the trend of decreasing<br />

spatial mean snow cover durati<strong>on</strong> (Jaagus et al 2003).<br />

Our results indicate that the timing of ice break-up dates and<br />

durati<strong>on</strong> of ice cover were not associated with z<strong>on</strong>al<br />

circulati<strong>on</strong> indecies. The impact of the atmospheric<br />

circulati<strong>on</strong> <strong>on</strong> the ice cover durati<strong>on</strong> acts indirectly through<br />

air temperature and snow cover c<strong>on</strong>diti<strong>on</strong>s in winter. Local<br />

meteorlogical c<strong>on</strong>diti<strong>on</strong>s such as type of snow cover and<br />

melting-refreezing subperiods influenced the length of the<br />

ice cover period more powerfully than the large-scale NAO.<br />

In the same c<strong>on</strong>diti<strong>on</strong>s, the air temperature and warm<br />

rainfall significantly affect the timing of snow cover, but not<br />

too much impact <strong>on</strong> the ice break-up in lake.<br />

In general, the ice break-up dates of Lake Võrtsjärv<br />

statistically cannot be related to large-scale atmospheric<br />

circulati<strong>on</strong>. Some statistically significant correlati<strong>on</strong>s<br />

between z<strong>on</strong>al circulati<strong>on</strong> indicies and ice cover parametres<br />

detected <strong>on</strong>ly for ice thickness parametre (Fig. 2).<br />

Ice thickness in the end of<br />

January, cm<br />

Ice thickness in the end of<br />

February, cm<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

y = -7,81x + 39,49<br />

R 2 = 0,16<br />

0<br />

-1,50 -0,50 0,50 1,50<br />

Z<strong>on</strong>al circulati<strong>on</strong> index in XI-I<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

y = -14,53x + 47,71<br />

R 2 = 0,28<br />

-1,50 -0,50 0,50 1,50<br />

Z<strong>on</strong>al circulati<strong>on</strong> index in XI-II<br />

Figure 2. Correlati<strong>on</strong> between z<strong>on</strong>al circulati<strong>on</strong> indices and<br />

ice-cover thickness.<br />

These results can be explained with the influence of<br />

meridi<strong>on</strong>al circulati<strong>on</strong> index, which in most meterological<br />

stati<strong>on</strong>s in Est<strong>on</strong>ia statistically not correlated with the winter<br />

temperatures (Tomingas, 2002). Also the correlati<strong>on</strong><br />

between the snow cover data and the meridi<strong>on</strong>al index was<br />

not statistically significant.<br />

May be in some cases it is possible to obtain a better<br />

understanding of the dependence of ice-freeze and ice cover<br />

break-up dates and ice seas<strong>on</strong>s by using daily circulati<strong>on</strong><br />

indices. For example, an accumulated degree-day analysis<br />

based <strong>on</strong> the daily temperatures gives a relatively good<br />

correlati<strong>on</strong> with the ice thickness (Fig. 3) and z<strong>on</strong>al m<strong>on</strong>thly<br />

circulati<strong>on</strong> indices (Fig. 4). The formati<strong>on</strong> and break-up of<br />

the ice cover is assumed to occur when in every year the<br />

accumulated degree-day reaches a critical value (Yoo and<br />

D`Odorico, 2002).<br />

- 119 -<br />

Ice thickness, cm<br />

100<br />

80<br />

60<br />

40<br />

y = -2E-05x2 - 0,067x + 12,24<br />

R2 20<br />

0<br />

= 0,47<br />

-1600 -1200 -800 -400 0<br />

Sum of t0 from 01.11 to 31.03<br />

4. C<strong>on</strong>clusi<strong>on</strong><br />

Figure 3. The dependence of ice thickness from the air<br />

temperature c<strong>on</strong>diti<strong>on</strong>s.<br />

Accumulated degree-day<br />

from 01.11 to 31.03<br />

0<br />

-400<br />

-800<br />

-1200<br />

-1600<br />

-2000<br />

y = 200x - 572<br />

R 2 = 0,35<br />

-2,00 -1,00 0,00 1,00 2,00 3,00<br />

Z<strong>on</strong>al circulati<strong>on</strong> index in XII-II<br />

Figure 4. Correlati<strong>on</strong> between z<strong>on</strong>al circulati<strong>on</strong> index<br />

and accumulated degree-day.<br />

References<br />

Blenckner, T., Chen, D. 2003. Comparis<strong>on</strong> of the impact<br />

of regi<strong>on</strong>al and North Atlantic atmospheric circulati<strong>on</strong><br />

<strong>on</strong> an aquatic ecosystem. Climate Research 23: 131–<br />

36.<br />

Jaagus, J., Truu, J., Ahas, R., Aasa, A. 2003. Spatial and<br />

temporal variability of climatic seas<strong>on</strong>s <strong>on</strong> the East<br />

European Plain in relati<strong>on</strong> to large-scale atmospheric<br />

circulati<strong>on</strong>. Climate Research 23: 111-129.<br />

Järvet, A. (1999) Influence of ice cover <strong>on</strong> the ecological<br />

c<strong>on</strong>diti<strong>on</strong>s of shallow Lake Võrtsjärv. Publicati<strong>on</strong>es<br />

Instituti Geographici Univesitatis Tartuensis. Vol. 84,<br />

pp. 92-100.<br />

Livingst<strong>on</strong>e D. 1999. Ice break-up <strong>on</strong> southern Lake<br />

Baikal and its relati<strong>on</strong>ship to local and regi<strong>on</strong>al air<br />

temperatures in Sibiria and the North Atlantic<br />

Oscillati<strong>on</strong>. Limnol-Oceanography 44: 1486–1497.<br />

Magnuss<strong>on</strong>, J., J., Roberts<strong>on</strong>, D.M, Bens<strong>on</strong>, B.J., Wynne<br />

R.H., Livingst<strong>on</strong>e, D.M., Arai, T., Assel, R.A., Barry,<br />

R.G., Card, V., Kuusisto, E., Granin, N.G., Prowse,<br />

T.D., Stewart, K.M. and V.S. Vuglinski. (2000)<br />

Historical trends in lake and River Ice cover in the<br />

Northern hemisphere. Science, 289, 1743-1746.<br />

Tomingas, O., Relati<strong>on</strong>ship between atmospheric<br />

circulati<strong>on</strong> indices and climate variability in Est<strong>on</strong>ia,<br />

Boreal Env. Res., 7, 463-469, 2002<br />

Yoo, J.-C., D`Odorico, P. 2002. Trends and fluctuati<strong>on</strong>s in<br />

the dates of ice break-up of lakes and rivers in<br />

Northern Europe: the effect of the North Atlantic<br />

Oscillati<strong>on</strong>. Journal of Hydrology 268: issues 1–4,<br />

100–112.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!