07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. Hydrodynamic model of nutrient loads in<br />

the Western Dvina/ Daugava River<br />

The <strong>on</strong>e-dimensi<strong>on</strong> hydrodynamic model of polluti<strong>on</strong><br />

load in rivers used in this study is based <strong>on</strong> the comm<strong>on</strong><br />

set of equati<strong>on</strong>s for the movement of water and for the<br />

movement of a pollutant.<br />

Governing equati<strong>on</strong>s for the calculati<strong>on</strong> of hydraulic<br />

parameters (water levels, discharges, average velocities<br />

and velocity distributi<strong>on</strong> in each cross secti<strong>on</strong> of the<br />

river) are based <strong>on</strong> the Saint-Venant generalized equati<strong>on</strong>s.<br />

The unknown values η(x,t) (water level) and Q(x,t) (water<br />

discharge) are found by solving the following hyperbolic<br />

system of equati<strong>on</strong>s<br />

∂η ∂Q<br />

B + = q<br />

(1)<br />

0<br />

∂t<br />

∂x1<br />

∂Q<br />

∂Q<br />

2 2 ∂η<br />

+ 2V<br />

+ (CV<br />

−V<br />

)B1<br />

= Ф (2)<br />

t ∂x<br />

∂x<br />

∂ 1<br />

1<br />

which satisfies the following c<strong>on</strong>diti<strong>on</strong>s :<br />

- initial Q(x1,t)=Q0(x1); η(x1,t)= η0(x1) (3)<br />

- boundary Q(0,t)= ϕ(t);Q(L,η)=ψ(z) (4)<br />

⎡ ⎛ ∂ω<br />

⎞ ⎤ 2 Q Q<br />

Ф = ⎢B1I<br />

0 + H c<strong>on</strong>st ⎥V<br />

− gω<br />

;<br />

where :<br />

⎜<br />

⎣ x ⎟ =<br />

2<br />

⎝ ∂ 1 ⎠ ⎦ K<br />

Q<br />

V = ; C<br />

ω<br />

V<br />

=<br />

ω<br />

g ; K = ωC<br />

B<br />

For the calculati<strong>on</strong> of the velocity distributi<strong>on</strong> in each<br />

cross-secti<strong>on</strong> the real flow is assumed to be replaced by<br />

a superpositi<strong>on</strong> of two hypothetical flat rectangular<br />

flows (vertical with depth H and horiz<strong>on</strong>tal with width<br />

B). The velocity distributi<strong>on</strong> results from solving of the<br />

n<strong>on</strong>linear system of equati<strong>on</strong>s taking into account the<br />

menti<strong>on</strong>ed hypothesis and a logarithmic law for the distributi<strong>on</strong><br />

of a velocity in the vertical.<br />

The <strong>on</strong>e-dimensi<strong>on</strong>al hydrodynamic model of the nutrient<br />

transport are based <strong>on</strong> the equati<strong>on</strong>s of turbulent<br />

diffusi<strong>on</strong>.<br />

∂ ( ωC)<br />

∂ ( ωVC<br />

) ∂ ⎛ ∂C<br />

⎞<br />

+ = ωD<br />

+ ωf<br />

∂t<br />

∂x<br />

∂x<br />

⎜<br />

∂x<br />

⎟ (5)<br />

1<br />

1 ⎝ 1 ⎠<br />

which satisfies the following c<strong>on</strong>diti<strong>on</strong>s :<br />

- initial C( x1,<br />

t0<br />

) = ϕ(<br />

x1)<br />

(6)<br />

- boundary C( 0,<br />

t)<br />

= ψ(<br />

t)<br />

(7)<br />

where :<br />

Q -water discharge in cross secti<strong>on</strong>, m 3 /s;<br />

η - water level, m;<br />

V -average velocity in cross secti<strong>on</strong>, m/s;<br />

B -width of transiti<strong>on</strong>al part of cross secti<strong>on</strong>, m;<br />

B0 -width of comm<strong>on</strong> of cross secti<strong>on</strong>, m;<br />

ω - area of cross secti<strong>on</strong>, m 3 ;<br />

Q -inflow discharge, m 3 /s;<br />

I0 - bottom gradient;<br />

C -average c<strong>on</strong>centrati<strong>on</strong> of pollutant in cross<br />

secti<strong>on</strong>, mg/l:<br />

D -coefficient of l<strong>on</strong>gitudinal dispersi<strong>on</strong>, m 2 /s;<br />

R -hydraulic radius, m;<br />

CR -Chezi coefficient;<br />

L -length of river site, m;<br />

q -water influx (per unit length), m 3 /s;<br />

H –depth, m.<br />

1<br />

R<br />

R<br />

- 189 -<br />

Modeling Criteria<br />

The <strong>on</strong>e-dimensi<strong>on</strong>al hydrodynamic model can be<br />

used for the calculati<strong>on</strong> of l<strong>on</strong>g-distance polluti<strong>on</strong> transport<br />

in rivers <strong>on</strong>ly in cases where the polluti<strong>on</strong> gradients<br />

across the river are negligibly small compared to those<br />

al<strong>on</strong>g the river. This is in particular important for mean<br />

calculati<strong>on</strong>s of cross-boundary transport.<br />

Model descripti<strong>on</strong><br />

The method of finite differences is used to solve the <strong>on</strong>edimensi<strong>on</strong>al<br />

hydrodynamic model based <strong>on</strong> equati<strong>on</strong>s<br />

(1), (2) and (5). The <strong>on</strong>e-dimensi<strong>on</strong>al hydrodynamic<br />

model for the Western Dvina/Daugava River was developed.<br />

The <strong>on</strong>e-dimensi<strong>on</strong>al hydrodynamic model allows<br />

to calculate the distributi<strong>on</strong> of average c<strong>on</strong>centrati<strong>on</strong> of<br />

pollutants al<strong>on</strong>g the river and to forecast the latter for a<br />

time period of 30 days in case of accidental loads from a<br />

point source. Also, an average polluti<strong>on</strong> discharge is<br />

calculated for locati<strong>on</strong>s where the river crosses state<br />

boundaries.<br />

The procedure of modeling the nutrient comp<strong>on</strong>ents<br />

transport in Western Dvina/Daugava has been designed<br />

as a c<strong>on</strong>venient “Menu-driven system”. Users may apply<br />

the model by providing required model input informati<strong>on</strong><br />

with a c<strong>on</strong>venient easy-to-use dialog system (see<br />

fig.3). A relevant User Manual was developed for this<br />

purpose.<br />

Figure 3. Example of the hydrodynamic prognostic<br />

model user menu output for the Western Dvina/Daugava<br />

river showing results for 2 hours (left) and 18 hours<br />

(right) after injecti<strong>on</strong> of loads from a point source.<br />

Model Calibrati<strong>on</strong>.<br />

The calibrati<strong>on</strong> of the model’s hydraulic variables was<br />

made based <strong>on</strong> observed hydraulic data. The calibrati<strong>on</strong><br />

parameters in this case are the local stress coefficients<br />

al<strong>on</strong>g the perimeter of the cross secti<strong>on</strong>s. The calibrati<strong>on</strong><br />

parameters for the chemical parameters are coefficients<br />

characterizing the distributi<strong>on</strong> of “self cleaning” of the<br />

river, included in the right-hand side of equati<strong>on</strong> (6).<br />

Experimental data of nitrogen amm<strong>on</strong>ia distributi<strong>on</strong> in<br />

the Western Dvina/Daugava were used.<br />

References<br />

Korneev, V., Rogunovich V., Stanckevich, A., Water<br />

regime of the river Pripiat and its runs at incomplete<br />

realizati<strong>on</strong> of the design of guard of basin from deluging.<br />

Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> “Modern problems<br />

of study, usage and protecti<strong>on</strong> of natural recourses of<br />

Polesje-regi<strong>on</strong>”, Minsk (Russian). p.120.<br />

Rogunovich, V.P. Automatisati<strong>on</strong> of a mathematical<br />

modeling of flow and substance transport in the<br />

water-stream systems, St.-Petersburg,1989 (Russian),<br />

p 263.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!