07.02.2013 Views

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

Fourth Study Conference on BALTEX Scala Cinema Gudhjem

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

- 131 -<br />

Wind Energy Prognoses for the Baltic Regi<strong>on</strong><br />

Sara C. Pryor 1,2 , Rebecca J. Barthelmie 2 and Justin T. Schoof 1<br />

1 Atmospheric Science Program, Indiana University, Bloomingt<strong>on</strong>, IN 47405 (email: spryor@indiana.edu)<br />

2 Department of Wind Energy, Risoe Nati<strong>on</strong>al Laboratory, Dk 4000 Roskilde, Denmark.<br />

1. Introducti<strong>on</strong><br />

In the c<strong>on</strong>text of wind farms which have typical lifetimes<br />

≈30 years, the questi<strong>on</strong> is asked ‘what is a normal wind<br />

year?’ (over the wind farm lifetime what is the average<br />

expected energy producti<strong>on</strong>?). Recall energy density =<br />

½ρU 3 , hence cumulative annual energy density is dominated<br />

by the upper percentiles of the probability distributi<strong>on</strong>. This<br />

questi<strong>on</strong> can be extended to further encompass the<br />

following; ‘will n<strong>on</strong>-stati<strong>on</strong>arities in the global climate<br />

system cause the definiti<strong>on</strong> or magnitude of a normal wind<br />

year to evolve <strong>on</strong> timescales of relevance to wind energy<br />

developments?’<br />

2. Objectives and data<br />

<str<strong>on</strong>g>Study</str<strong>on</strong>g> objectives are to:<br />

o Quantify the variability of the wind energy in the<br />

twentieth century (C20th) (Pryor and Barthelmie 2003)<br />

and compare the reanalysis data sets.<br />

o Determine the degree to which a coupled Atmosphere-<br />

Ocean General Circulati<strong>on</strong> Model (AOGCM) captures<br />

recent spatio-temporal variability of wind speeds and<br />

extrapolate wind indices for the twenty-first century<br />

(C21st).<br />

Latitude (N)<br />

65<br />

64<br />

63<br />

62<br />

61<br />

60<br />

59<br />

58<br />

57<br />

56<br />

55<br />

54<br />

53<br />

B<br />

A<br />

D<br />

C<br />

F<br />

E<br />

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26<br />

L<strong>on</strong>gtiude (E)<br />

Figure 1. <str<strong>on</strong>g>Study</str<strong>on</strong>g> regi<strong>on</strong><br />

Historical data (1958-2001) are from the NCEP/NCAR<br />

(Kalnay et al. 1996) and ECMWF (Simm<strong>on</strong>s and Gibs<strong>on</strong><br />

2000) reanalysis projects (Figure 1), while prognostic flow<br />

is derived from daily output of the HadCM3 AOGCM (Pope<br />

et al. 2000) for the transient simulati<strong>on</strong> of the SRES A2<br />

emissi<strong>on</strong> scenario (IPCC 2000).<br />

H<br />

G<br />

3. Influence of normalizati<strong>on</strong> period <strong>on</strong> historical<br />

wind indices<br />

Wind indices are mechanisms for assessing inter- and intraannual<br />

variability of wind energy. They are used here to<br />

c<strong>on</strong>vert variability of wind speeds into a metric accessible to<br />

wind energy developers and to provide an overview of<br />

changes in the wind speed probability distributi<strong>on</strong>.<br />

n<br />

3 (1)<br />

U j<br />

Index = ∑ * 100<br />

j=<br />

1<br />

3<br />

Ui...<br />

k<br />

j = 1, n indicates the time series from the period of interest<br />

i…k indicates the normalizati<strong>on</strong> period<br />

As shown by (1), wind indices exhibit intra- and interannual<br />

variability and are determined in part by the<br />

normalizati<strong>on</strong> period used.<br />

J<br />

I<br />

L<br />

K<br />

N<br />

M<br />

Figure 2 shows the mean annual wind index for 1958-<br />

2001 calculated for grid cells E, I and L presented as a<br />

functi<strong>on</strong> of the normalizati<strong>on</strong> period. Due to the relatively<br />

low wind speeds during the late 1950’s to 1970, mean<br />

wind indices for these grid cells calculated using the<br />

beginning of the record as the normalizati<strong>on</strong> interval<br />

exhibit values above 100 %, while the c<strong>on</strong>verse is true for<br />

the normalizati<strong>on</strong> by the latter porti<strong>on</strong> of the period. For<br />

example, using 1987-1998 for normalizati<strong>on</strong> (as in the<br />

Danish wind index, www.emd.dk) gives a mean annual<br />

wind index for grid cell E over 1958-2001 of 92-94 %,<br />

indicating the mean wind energy resource over Denmark<br />

for 1958-2001 is approximately 7 % lower than that<br />

during 1987-1998. For the other two grid cells shown in<br />

Figure 2 the 1987-1998 period also exhibited higher<br />

average wind energy density than was typical of 1958-<br />

2001. For grid cell L the maximum in wind indices was<br />

observed for normalizati<strong>on</strong> periods focused <strong>on</strong> the late<br />

1970s and early 1980s indicating this period was<br />

characterized by atypically low wind energy. In summary,<br />

for the grid cells c<strong>on</strong>sidered here 1987-1998 does not<br />

represent a robust wind energy climatology relative to the<br />

entire period of 1958-2001, while 1969-1980 is arguably<br />

the 12-year period that best represents the 1958-2001<br />

period. Discrepancies between the reanalysis data sets as<br />

evidenced in Figure 2 will be c<strong>on</strong>sidered in more detail in<br />

the presentati<strong>on</strong>.<br />

Mean annual wind index (1958-2001)<br />

Mean annual wind index (1958-2001)<br />

112<br />

108<br />

104<br />

100<br />

96<br />

92<br />

88<br />

112<br />

108<br />

104<br />

100<br />

96<br />

92<br />

88<br />

E<br />

NCEP/NCAR<br />

ECMWF<br />

1960 1970 1980 1990<br />

Year (begining of normalizati<strong>on</strong> period)<br />

L<br />

1960 1970 1980 1990<br />

Year (begining of normalizati<strong>on</strong> period)<br />

Mean annual wind index (1958-2001)<br />

112<br />

108<br />

104<br />

100<br />

96<br />

92<br />

88<br />

I<br />

1960 1970 1980 1990<br />

Year (begining of normalizati<strong>on</strong> period)<br />

Figure 2. Mean annual wind index for data from 1958-<br />

2001 and grid cells E, I and L presented as a functi<strong>on</strong> of<br />

the normalizati<strong>on</strong> period (plotted at the year which begins<br />

the normalizati<strong>on</strong> interval).<br />

4. Evaluati<strong>on</strong> of HadCM3: Comparis<strong>on</strong> with<br />

the reanalysis data sets for 1990-2001.<br />

Prior to use of HadCM3 simulati<strong>on</strong> output to develop<br />

wind energy prognoses it is important to evaluate the<br />

performance of the model during the period of overlap<br />

with the reanalysis data (1990-2001). Hence, we evaluate:<br />

o Mean wind speed fields derived from daily average<br />

data and spatial correlati<strong>on</strong>s of the data.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!