13.07.2015 Views

CONFINAMIENTO NANOSC´OPICO EN ESTRUCTURAS ... - It works!

CONFINAMIENTO NANOSC´OPICO EN ESTRUCTURAS ... - It works!

CONFINAMIENTO NANOSC´OPICO EN ESTRUCTURAS ... - It works!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

260 PublicacionesJ. L. MOVILLA AND J. PLANELLES PHYSICAL REVIEW B 74, 125322 2006tion induced by the dielectric discontinuity strongly affectsinterparticle correlations and interaction energies. In addition,the study also demonstrates how the combination ofsingle- and two-particle Coulombic effects may give rise, inweakly confined D − systems, to the appearance of differentphases. Strong, Wigner-like localizations of the electronicdensity and important reconstructions of the two-electronground state are found.The main conclusions of the paper are itemized as follows.i Surface states in QDs surrounded by air or a vacuummay localize the electronic density in the external medium,and, then, electrons undergo a strong angular correlation.This correlation is gradually reduced as the QD dielectricconstant increases, due to the influence of the polarizationcharges induced at the dielectric interface.ii In the case of surface states in air-filled nanocavitiesof semiconductor matrices, polarization charges reduce theelectronic correlation to a greater extent than in the QD case.iii A transition phase from volume to surface states accompaniedby a strong radial Wigner-like localization of theelectronic density is produced when a quantum dot is dopedwith a central shallow donor impurity in the weak confinementregime. Within this phase, the D − center presents zerobinding energy, providing a situation in which the systembehaves as a twofold electron reservoir. We show that theimpurity is able to attach the first excess electron strongly.However, this electron totally blocks the effect of the impurity,and the system now behaves as an undoped and emptyQD for the second excess electron.iv The radial-Wigner phase vanishes as we approach thestrong confinement regime. However, it is stable within awide range of QD sizes, thus making its experimental searchand characterization feasible.ACKNOWLEDGM<strong>EN</strong>TSFinancial support from MEC-DGI Project No. CTQ2004-02315/BQU and UJI-Bancaixa Project No. P1-B2002-01Spain is gratefully acknowledged. A Spanish MECD FPUgrant is also acknowledged J.L.M..*Electronic address: planelle@exp.uji.es1 L. Bányai and S. W. Koch, Semiconductor Quantum Dots WorldScientific, Singapore, 1993.2 L. E. Brus, J. Chem. Phys. 80, 4403 1984.3 V. A. Fonoberov, E. P. Pokatilov, and A. A. Balandin, Phys. Rev.B 66, 085310 2002.4 L. Bányai, I. Galbraith, C. Ell, and H. Haug, Phys. Rev. B 36,6099 1987.5 T. Takagahara, Phys. Rev. B 47, 4569 1993.6 P. G. Bolcatto and C. R. Proetto, J. Phys.: Condens. Matter 13,319 2001.7 F. Stern, Phys. Rev. B 17, 5009 1978.8 M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, J. Phys.:Condens. Matter 9, 9881 1997.9 G. Goldoni, F. Rossi, and E. Molinari, Phys. Rev. Lett. 80, 49951998.10 A. Franceschetti, A. Williamson, and A. Zunger, J. Phys. Chem.B 104, 3398 2000.11 R. Tsu and D. Babić, Appl. Phys. Lett. 64, 1806 1994.12 Z. Y. Deng, J. K. Guo, and T. R. Lai, J. Phys.: Condens. Matter 6,5949 1994.13 A. Mews, A. Eychmüller, M. Giersig, D. Schoos, and H. Weller,J. Chem. Phys. 98, 934 1994.14 A. P. Alivistatos, Nature London 271, 933 1996.15 A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, Phys.Rev. B 53, R13242 1996.16 R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. Burke, J.Chem. Phys. 114, 1813 2001.17 D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 1996.18 Special Issue on Spectroscopy of Isolated and Assembled SemiconductorNanocrystals, J. Lumin. 70 1-6 1996.19 G. Bastard, Wave Mechanics Applied to Semiconductor HeterostructuresLes Éditions de Physique, Les Ulis, 1988.20 J. P. Loehr, Physics of Strained Quantum Well Lasers KluwerAcademic, Boston, 1998.21 G. W. Bryant and W. Jaskólski, Phys. Rev. B 67, 205320 2003.22 J. J. Shi, Chin. Phys. 11, 1286 2002.23 J. D. Jackson, Classical Electrodynamics Wiley, New York,1962.24 L. E. Brus, J. Chem. Phys. 79, 5566 1983.25 M. Lannoo, C. Delerue, and G. Allan, Phys. Rev. Lett. 74, 34151995.26 P. G. Bolcatto and C. R. Proetto, Phys. Rev. B 59, 12487 1999.27 L. Bányai, P. Gilliot, Y. Z. Hu, and S. W. Koch, Phys. Rev. B 45,14136 1992.28 A. Orlandi, G. Goldoni, F. Mangui, and E. Molinari, Semicond.Sci. Technol. 17, 1302 2002.29 J. L. Movilla, J. Planelles, and W. Jaskólski, Phys. Rev. B 73,035305 2006.30 J. Planelles and J. L. Movilla, Phys. Rev. B 73, 235350 2006.31 L. W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039 1994.32 D. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 1966.33 P. Harrison, Quantum Wells, Wires and Dots Wiley, Chichester,2001.34 J. L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 1442005.35 Once a prominent role of the bare Coulomb term between theelectrons located in the crown on the vacuum side is assumed,pushing either electron to an opposite site in this outside crown.36 In these volume states, carriers are almost completely confinedinside the QD border. Then, the dielectric constant coming intothe bare Coulomb term is QD .37 Care should be taken when talking about splitting the electronelectroninteraction energy into a sum of bare Coulomb andpolarization. Indeed, the so-called bare Coulomb term may includedielectric polarization. For example, the interaction betweentwo electrons in a completely uniform medium so that nopolarization terms coming from dielectric mismatches arisewith permittivity 1 is given by the bare Coulomb term e 2 /r.125322-8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!