09.03.2013 Views

Contents - Max-Planck-Institut für Physik komplexer Systeme

Contents - Max-Planck-Institut für Physik komplexer Systeme

Contents - Max-Planck-Institut für Physik komplexer Systeme

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a diffusion process with the z coordinate assuming the<br />

role usually played by time:<br />

C(x,y,z) ≈ 1<br />

z exp<br />

<br />

−γ x2 + y2 <br />

. (1)<br />

z<br />

Figure 2: Magnetisation and diffuse neutron scattering with field applied<br />

along the [001] axis. Left: 3D representation of the single crystal<br />

neutron diffraction data from E2, HZB, at 5/7hS and 0.7 K showing a<br />

cone of scattering coming from (020) Bragg peak. Right: Calculation<br />

of diffuse scattering characteristic of the weakly biased random walk<br />

correlations with bias of 0.53 : 0.47 and Bint|| [001].<br />

The scattering from a large ensemble of such walks has<br />

been calculated including all the geometrical factors for<br />

the neutron scattering cross section. As can be seen<br />

from the side-by-side comparison of the data and modelling,<br />

the string configurations account very well for<br />

the data and reproduce the cone of scattering observed<br />

(Fig. 2).<br />

It turns out that the interactions between the strings<br />

– considered to be of a hard-core exclusion nature in<br />

the theory above – can elegantly be tuned by modulating<br />

the exchange constants in different directions<br />

of the pyrochlore lattice. By choosing exchange constants<br />

as displayed in Fig. 3, we obtain a very unusual<br />

“infinite order” phase transition out of the Coulomb<br />

into a fully ordered phase, at a critical temperature<br />

Tc = 4δ/(3ln 2).<br />

Mathematically, the system can be described using a<br />

transfer matrix to ‘propagate’ the strings along the<br />

[001] direction. This transfer matrix is block-diagonal<br />

in the number of strings, and one finds that (i) below<br />

Tc the magnetisation is saturated; and (ii) at Tc all sectors<br />

are equiprobable and all configurations within a<br />

sector are equiprobable, reflecting the absence of interactions<br />

between strings [14]. Indeed, at Tc, the transfer<br />

matrix exhibits a symmetry enhancement from U(1)<br />

to SU(2)! A consequence of the absence of interactions<br />

between strings is that the surface tension between oppositely<br />

magnetised domains vanishes and the domain<br />

wall width diverges as Tc is approached from below.<br />

At T − c the magnetisation profile away from the domain<br />

wall centre M(y) is a function only of y/L⊥. Below Tc<br />

the domain wall width ℓ −1<br />

w ∝ (1 − T/Tc) 1/2 (Fig. 3). It<br />

is striking to find broad domain walls in an Ising magnet;<br />

they may be detectable using small angle neutron<br />

scattering.<br />

Figure 3: In-plane magnetisation profile vs y/L⊥ at T = 0.999Tc for<br />

plane size L⊥ = {6, 8, 10, 12, 16, 20}. Inset: A tetrahedron of the pyrochlore<br />

lattice with exchange J and J − δ as indicated: the dashed<br />

bonds lie in (001) planes. One of the two ground states for δ > 0 is<br />

shown.<br />

The natural way to generate the required degeneracy<br />

lifting in a magnetic compound is to apply uniaxial<br />

pressure along the [001] axis of a single crystal. To<br />

see this exotic “infinite-order” phase transition, pressures<br />

about a factor three larger then the ones studied<br />

so far [15] are necessary. We hope our work will stimulate<br />

further experimental efforts to realise this unusual<br />

transition.<br />

[1] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, B. S. Shastry,<br />

Nature 399, (1999) 333; S. T. Bramwell, M. J. P. Gingras, Science<br />

294, (2001) 1495.<br />

[2] C. Castelnovo, R. Moessner, S. L. Sondhi, Nature 451, (2008) 42.<br />

[3] S. V. Isakov, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 95 (2005)<br />

217201.<br />

[4] S. V. Isakov, K. Gregor, R. Moessner, S. L. Sondhi, Phys. Rev.<br />

Lett. 93, (2004) 167204.<br />

[5] L. D. C. Jaubert, P. C. W. Holdsworth, Nature Physics 5, (2009)<br />

258.<br />

[6] S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran,<br />

T. Fennell, Nature 461, (2009) 956.<br />

[7] T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran,<br />

A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell,<br />

Science 326, (2009) 415.<br />

[8] D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke,<br />

C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner,<br />

K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky,<br />

R. S. Perry, Science 326, (2009) 411.<br />

[9] C. Castelnovo, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 104,<br />

(2010) 107201.<br />

[10] D. Slobinsky, C. Castelnovo, R. A. Borzi, A. S. Gibbs,<br />

A. P. Mackenzie, R. Moessner, S. A. Grigera, Phys. Rev. Lett. 105,<br />

(2010) 267205.<br />

[11] Y. Levin, Rep. Prog. Phys. 65, (2002) 1577.<br />

[12] P. A. M. Dirac, Proc. R. Soc. Lond. A 133, (1931) 60.<br />

[13] L. D. C. Jaubert, J. T. Chalker, P. C. W. Holdsworth, R. Moessner,<br />

Phys. Rev. Lett. 100, (2008) 067207.<br />

[14] L. D. C. Jaubert, J. T. Chalker, P. C. W. Holdsworth, R. Moessner,<br />

Phys. Rev. Lett. 105, (2010) 087201.<br />

[15] M. Mito et al., J. Magn. Magn. Mater. 310, (2007) E432.<br />

2.10. Experimental Manifestations of Magnetic Monopoles 61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!