09.03.2013 Views

Contents - Max-Planck-Institut für Physik komplexer Systeme

Contents - Max-Planck-Institut für Physik komplexer Systeme

Contents - Max-Planck-Institut für Physik komplexer Systeme

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

criticality. The current in the steady state limit is<br />

I(V,T) = e<br />

×<br />

<br />

dω ρ(ω)[fL(ω) − fR(ω)]<br />

2 <br />

Im T a LL(ω,T,V ) + T a RR(ω,T,V ) .<br />

Here, Tα,β, (α,β = L/R), is the T-matrix of the Bose-<br />

Fermi Kondo model. In the linear response regime of<br />

the quantum critical LM phase, the conductance is proportional<br />

to T 1/2 [4]. In the non-linear regime, V → 0<br />

at T = 0, the conductance goes as V 1/2 . Fig. 2(a) shows<br />

a scaling collapse of I/T 3/2 vs. V/T . Fig. 2(b) demonstrates<br />

scaling of the dynamical spin susceptibiltity in<br />

terms of ω/T and V/T .<br />

(a)<br />

(c) (d)<br />

Figure 2: (a) Scaling of the current-voltage characteristics in the critical<br />

local moment phase and (b) scaling of the imaginary part of the<br />

local dynamical spin susceptibility. (c) The fluctuation-dissipation<br />

ratio for the spin susceptibility in the critical local moment phase<br />

(g = 4 · gc) for V/D = 5.0 · 10−3 = 0.1T0 K , where T0 K is the Kondo<br />

temperature in the absence of magnons (g = 0). (d) An effective<br />

temperature T ∗ χ can be defined such that the FDRχ(ω, T, V ) of (c)<br />

collapses on coth(ω/2T), the equilibrium FDR of a bosonic field.<br />

The ω/T and V/T scaling occurs only in the scaling<br />

regime of the quantum critical LM phase and at<br />

the quantum critical point. As in the equilibrium<br />

relaxational regime (V = 0, ω ≪ kBT/) where<br />

an ω/T scaling implies a linear-in-T spin relaxation<br />

[1] Focus issue: Quantum phase transitions Nature Phys. 4, (2008) 167-204.<br />

[2] S. Kirchner and Q. Si. Phys. Rev. Lett. 103, (2009) 206401.<br />

[3] S. Kirchner and Q. Si. Phys. Status Solidi B 247, (2010) 631.<br />

[4] S. Kirchner, L. Zhu, Q. Si, and D. Natelson. Proc. Natl. Acad. Sci. USA 102, (2005) 18824.<br />

[5] Q. Si, S. Rabello, K. Ingersent and J. L. Smith. Nature 413, (2001) 804.<br />

[6] S. Kirchner and Q. Si. Physica B 403, (2008) pp. 1189.<br />

[7] L. Zhu, S. Kirchner, Q. Si, and A. Georges. Phys. Rev. Lett. 93, (2004) 267201.<br />

[8] P. C. Hohenberg and B. I. Shraiman. Physica D 37, (1989) 109.<br />

[9] L. F. Cugliandolo, J. Kurchan, and L. Peliti. Phys. Rev. E 55, (1997) 3898.<br />

[10] T. Risler, J. Prost, and F. Jülicher. Phys. Rev. Lett. 93, (2004) 175702.<br />

(b)<br />

rate, in the non-equilibrium relaxational regime here<br />

(T = 0, ω ≪ eV/), the ω/V scaling implies a<br />

linear-in-V dependence of the decoherence rate, ΓV ≡<br />

[−i∂ lnχa (ω,T = 0,V )/∂ω] −1<br />

ω=0 = c(e/)V . It is worth<br />

stressing that, in contrast to its counterpart in the highvoltage<br />

(V ≫ kBT 0 K /e) perturbative regime, the decoherence<br />

rate here is universal: c is a number characterizing<br />

the fixed point.<br />

We now turn to the concept of effective temperature<br />

in the non-linear regime. The notion of an effective<br />

temperature for extending the FDT to non-equilibrium<br />

states was first introduced in the context of steady<br />

states in chaotic systems [8], and was later used for<br />

non-stationary states in glassy systems [9] and in the<br />

context of coupled noisy oscillators [10]. Fig. 2(c) displays<br />

the FDRχ(ω,T,V ) for V = 5 · 10−3D = 0.1T 0 K ,<br />

with T 0 K being the Kondo temperature in the absence<br />

of magnons (g = 0). The scaling regime extends up<br />

to energies of the order of T 0 K , so that bias voltages<br />

larger than V = 0.1T 0 K might be affected by sub-leading<br />

contributions. Three important observations underly<br />

the results displayed in Fig. 2(a): (1) for ω >> T ,<br />

FDRχ(ω,T,V ) approaches the value predicted by the<br />

FDT, (coth(ω/2T) → 1), (2) for T >≈ 10−3V , the deviations<br />

from the linear response behavior are hardly<br />

discernible, (3) for T

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!