09.04.2013 Views

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IPAF and NAIP5<br />

IPAF (NLRC4, CLAN/CARD12) and NAIP5 constitute another set of NLRs.<br />

IPAF belongs to the CARD subfamily whereas NAIP5 is a member of the<br />

BIR subfamily. Both NLRs have been shown to respond to flagell<strong>in</strong>, the ma<strong>in</strong><br />

component of the bacterial flagellum, restrict<strong>in</strong>g the proliferation of<br />

<strong>in</strong>tracellular bacteria such as Salmonella typhimurium, Shigella flexneri and<br />

Legionella pneumophila. IPAF senses flagell<strong>in</strong> from S. typhimurium and S. flexneri<br />

secreted by the bacterial type III secretion system (TTSS). SipB <strong>in</strong> S.<br />

typhimurium and IpaB <strong>in</strong> S. flexneri are part of a TTSS and are required for<br />

Caspase-1 activation. These prote<strong>in</strong>s participate <strong>in</strong> the translocation of<br />

flagell<strong>in</strong> <strong>in</strong> the cytosol by form<strong>in</strong>g a pore <strong>in</strong> the host-cell membrane.<br />

Caspase-1 activation <strong>in</strong>duced by cytosolic flagell<strong>in</strong> has been shown to be<br />

IPAF-dependent, but TLR5-<strong>in</strong>dependent 19 . Thus TLR5 and IPAF appear to<br />

be two different sensors that respond to extracellular and cytosolic flagell<strong>in</strong>,<br />

respectively 20 .The adaptor ASC seems to be <strong>in</strong>volved <strong>in</strong> Caspase-1 activation<br />

<strong>in</strong> response to <strong>in</strong>fection with S. typhimurium and S. flexneri 21 . Sens<strong>in</strong>g of L.<br />

pneumophila flagell<strong>in</strong> which is secreted by the bacterial type IV secretion<br />

system is mediated by NAIP5. Mutations affect<strong>in</strong>g the NAIP5 locus (also<br />

known as Birc1e) have been implicated <strong>in</strong> <strong>in</strong>creased susceptibility of A/J<br />

macrophages to <strong>in</strong>fection with L. pneumophila. NAIP5 appears to form an<br />

<strong>in</strong>flammasome complex conta<strong>in</strong><strong>in</strong>g IPAF (but not ASC) and Caspase-1 22 .<br />

NAIP5-mediated signal<strong>in</strong>g pathway and IPAF-mediated Caspase-1 activation<br />

may act <strong>in</strong> concert to restrict L. pneumophila growth <strong>in</strong> macrophages 23,24 .<br />

1. Chamaillard M. et al., 2003. An essential role for NOD1 <strong>in</strong> host recognition of bacterial<br />

peptidoglycan conta<strong>in</strong><strong>in</strong>g diam<strong>in</strong>opimelic acid. Nat. Immunol. 4: 702-707. 2. Girard<strong>in</strong> SE. et al.,<br />

2003. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science<br />

300: 1584-1587. 3. McDonald C., N. Inohara, G. Nunez. 2005. Peptidoglycan signal<strong>in</strong>g <strong>in</strong> <strong>in</strong>nate<br />

immunity and <strong>in</strong>flammatory disease. J. Biol. Chem. 280: 20177-20180. 4. Kobayash, K. et al., 2002.<br />

RICK/Rip2/CARDIAK mediates signall<strong>in</strong>g for receptors of the <strong>in</strong>nate and adaptive immune<br />

systems. Nature 416: 194-199. 5. Inohara N. et al., 2000. An <strong>in</strong>duced proximity model for NF-<br />

B activation <strong>in</strong> the Nod1/RICK and RIP signal<strong>in</strong>g pathways. J. Biol. Chem. 275: 27823-27831.<br />

6. Kobayashi KS. et al., 2005. Nod2-dependent regulation of <strong>in</strong>nate and adaptive immunity <strong>in</strong><br />

the <strong>in</strong>test<strong>in</strong>al tract. Science 307: 731-734. 7. Hsu YM. et al., 2007. The adaptor prote<strong>in</strong> CARD9<br />

is required for <strong>in</strong>nate immune responses to <strong>in</strong>tracellular pathogens. Nat Immunol. 8(2):198-205.<br />

8. Ogura Y. et al., 2001. A frameshift mutation <strong>in</strong> NOD2 associated with susceptibility to Crohn’s<br />

disease. Nature 411: 603-606. 9. Hysi P. et al., 2005. NOD1 variation, immunoglobul<strong>in</strong> E and<br />

asthma. Hum. Mol. Genet. 14: 935-941. 10. Mart<strong>in</strong>on F. & Tschopp J., 2004. Inflammatory<br />

caspases: l<strong>in</strong>k<strong>in</strong>g an <strong>in</strong>tracellular <strong>in</strong>nate immune system to auto<strong>in</strong>flammatory diseases. Cell.<br />

117(5):561-74. 11. Faust<strong>in</strong> B, et al., 2006. In Vitro Reconstitution of the NALP1 Inflammasome<br />

Reveals Requirements for Caspase Activation. Blood (ASH Annual Meet<strong>in</strong>g Abstracts), 108:<br />

3658. 12. Boyden ED. & Dietrich WF., 2006. Nalp1b controls mouse macrophage susceptibility<br />

to anthrax lethal tox<strong>in</strong>. Nat Genet. 38(2):240-4. 13. Mart<strong>in</strong>on F. et al., 2006. Gout-associated<br />

uric acid crystals activate the NALP3 <strong>in</strong>flammasome. Nature 440(7081)237-241. 14. Kanneganti<br />

TD. et al., 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through<br />

cryopyr<strong>in</strong>/Nalp3. Nature 440(7081):233-236. 15. Mariathasan S. et al., 2006. Cryopyr<strong>in</strong> activates<br />

the <strong>in</strong>flammasome <strong>in</strong> response to tox<strong>in</strong>s and ATP. Nature. 440(7081):228-32. 16. Sutterwala FS.<br />

et al., 2006. Critical role for NALP3/CIAS1/Cryopyr<strong>in</strong> <strong>in</strong> <strong>in</strong>nate and adaptive immunity through<br />

its regulation of caspase-1. Immunity. 24(3):317-27. 17. Kanneganti TD. et al., 2007. Pannex<strong>in</strong>-1mediated<br />

recognition of bacterial molecules activates the cryopyr<strong>in</strong> <strong>in</strong>flammasome <strong>in</strong>dependent<br />

of Toll-like receptor signal<strong>in</strong>g. Immunity. 26(4):433-43. 18. T<strong>in</strong>g JP. et al., 2006. CATERPILLERs,<br />

pyr<strong>in</strong> and hereditary immunological disorders. Nat. Rev. Immunol. 6: 183-195. 19. Miao EA. et<br />

al., 2008. Pseudomonas aerug<strong>in</strong>osa activates caspase 1 through Ipaf. PNAS.105:2562-2567. 20.<br />

Yu HB.& F<strong>in</strong>lay BB. 2008. The Caspase-1 <strong>in</strong>flammasome: a pilot of <strong>in</strong>nate immune responses.<br />

Cell Host Microbe. 4:198-207. 21. Mariathasan S & Monack DM., 2007. Inflammasome adaptors<br />

and sensors: <strong>in</strong>tracellular regulators of <strong>in</strong>fection and <strong>in</strong>flammation. Nat Rev Immunol. 7(1):31-<br />

40. 22. Zamboni DS. et al., 2006. The Birc1e cytosolic pattern-recognition receptor contributes<br />

to the detection and control of Legionella pneumophila <strong>in</strong>fection. Nat Immunol. 7(3):318-25.<br />

23. Lamkanfi M. et al., 2007. The Nod-like receptor family member Naip5/Birc1e restricts<br />

Legionella pneumophila growth <strong>in</strong>dependently of caspase-1 axctivation. J Immunol. 178:8022-<br />

8027. 24. V<strong>in</strong>z<strong>in</strong>g M. et al. 2008. NAIP and IPAF control legionella pneumophila replication <strong>in</strong><br />

human cells. J Immunol. 180:6808-15.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity 53<br />

INNATE IMMUNITY 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!