09.04.2013 Views

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INNATE IMMUNITY 3<br />

RIG-I-Like Receptors<br />

RIG-I-like receptors (RLRs), also known as RIG-I-like helicases (RLHs)<br />

constitute a family of cytoplasmic RNA helicases that are critical for host<br />

antiviral responses. RIG-I (ret<strong>in</strong>oic-acid-<strong>in</strong>ducible prote<strong>in</strong> 1, also known as<br />

Ddx58) and MDA-5 (melanoma-differentiation-associated gene 5, also<br />

known as Ifih1 or Helicard) sense double-stranded RNA (dsRNA), a<br />

replication <strong>in</strong>termediate for RNA viruses, lead<strong>in</strong>g to production of type I<br />

<strong>in</strong>terferons (IFNs) <strong>in</strong> <strong>in</strong>fected cells 1 . Viral dsRNA is also recognized by Toll-<br />

Like receptor 3 (TLR3) which is expressed on the cell surface membrane<br />

or endosomes. Recognition of dsRNA by RIG-I/MDA-5 or TLR3 is cell-type<br />

dependent. Studies of RIG-I- and MDA-5-deficient mice have revealed that<br />

conventional dendritic cells (DCs), macrophages and fibroblasts isolated<br />

from these mice have impaired IFN <strong>in</strong>duction after RNA virus <strong>in</strong>fection,<br />

while production of IFN is still observed <strong>in</strong> plasmacytoid DCs (pDCs) 2 . Thus<br />

<strong>in</strong> cDCs, macrophages and fibroblasts, RLRs are the major sensors for viral<br />

<strong>in</strong>fection, while <strong>in</strong> pDCs, TLRs play a more important role.<br />

RIG-I and MDA-5 conta<strong>in</strong> a DExD/H box RNA helicase and two caspase<br />

recruit<strong>in</strong>g doma<strong>in</strong> (CARD)-like doma<strong>in</strong>s. The helicase doma<strong>in</strong> <strong>in</strong>teracts with<br />

dsRNA, whereas the CARD doma<strong>in</strong>s are required to relay the signal.<br />

Despite the overall structural similarity between these two sensors, they<br />

detect dist<strong>in</strong>ct viral species. RIG-I participates <strong>in</strong> the recognition of<br />

Paramyxoviruses (Newcastle disease virus (NDV), Sendai virus (SeV)),<br />

Rhabdoviruses (vesicular stomatitis virus (VSV)), Flaviviruses (hepatitis C<br />

(HCV)) and Orthomyxoviruses (Influenza), whereas MDA-5 is essential for<br />

the recognition of Picornaviruses (encephalo-myocarditis virus (EMCV))<br />

and poly(I:C), a synthetic analog of viral dsRNA 3 . Notably, RIG-I b<strong>in</strong>ds<br />

specifically to s<strong>in</strong>gle stranded RNA conta<strong>in</strong><strong>in</strong>g 5’-triphosphate such as viral<br />

RNA and <strong>in</strong> vitro-transcribed long dsRNA 4 . Mammalian RNA is either<br />

capped or conta<strong>in</strong>s base modifications suggest<strong>in</strong>g that RIG-I is able to<br />

discrim<strong>in</strong>ate between self and non-self RNA. Recently Kato et al., showed<br />

by us<strong>in</strong>g poly(I:C) treated with RNase III that RIG-I b<strong>in</strong>ds preferentially to<br />

54<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

short dsRNA while MDA-5 recognizes preferentially long dsRNA 5 .<br />

Although RIG-I and MDA-5 recognize different ligands, they share common<br />

signal<strong>in</strong>g features. Upon recognition of dsRNA, they are recruited by the<br />

adaptor IPS-1 (also known as MAVS, CARDIF or VISA) to the outer<br />

membrane of the mitochondria lead<strong>in</strong>g to the activation of several<br />

transcription factors <strong>in</strong>clud<strong>in</strong>g IRF3, IRF7 and NF-kB 6 . IRF3 and IRF7 control<br />

the expression of type I IFNs, while NF-kB regulates the production of<br />

<strong>in</strong>flammatory cytok<strong>in</strong>es. IRF3 and IRF7 activation <strong>in</strong>volves TNF (tumor<br />

necrosis factor) receptor-associated factor 3 (TRAF3), NAK-associated<br />

prote<strong>in</strong> 1 (NAP1), TANK and the prote<strong>in</strong> k<strong>in</strong>ase TANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase 1<br />

(TBK1) or IkB k<strong>in</strong>ase epsilon (IKKε) 6-8 . Recently, DDX3, a DEAD box<br />

helicase, was shown to <strong>in</strong>teract with TBK1/IKKε 9 . IPS-1 <strong>in</strong>teracts also with<br />

Fas-associated-death-doma<strong>in</strong> (FADD) and receptor <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> 1<br />

(RIP1) which <strong>in</strong>duces the activation of the NF-kB pathway 6-8, 10 .<br />

Because the production of cytok<strong>in</strong>es is closely controlled, the RIG-I/<br />

MDA-5 pathway is also strictly regulated. A third RLR has been described:<br />

laboratory of genetics and physiology 2 (LGP2). LGP2 conta<strong>in</strong>s a RNA<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> but lacks the CARD doma<strong>in</strong>s and thus acts as a negative<br />

feedback regulator of RIG-I and MDA-5. LGP2 appears to exert this activity<br />

at multiple levels by i) competitively sequester<strong>in</strong>g dsRNA, ii) form<strong>in</strong>g a<br />

prote<strong>in</strong> complex with IPS-1, and/or iii) b<strong>in</strong>d<strong>in</strong>g directly to RIG-I through a<br />

repressor doma<strong>in</strong> 11-13 . Many other molecules seem to be <strong>in</strong>volved <strong>in</strong> the<br />

negative control of RIG-I/MDA-5-<strong>in</strong>duced IFN production. Dihydroxyacetone<br />

k<strong>in</strong>ase (DAK), A20, r<strong>in</strong>g-f<strong>in</strong>ger prote<strong>in</strong> 125 (RNF125), suppressor<br />

of IKKε (SIKE), and peptidyl-propyl isomerase 1 (P<strong>in</strong>1), have been recently<br />

described as physiological suppressors of the RIG-I/MDA-5 signal<strong>in</strong>g<br />

pathway. Furthermore, some viral proteases have been identified, such as<br />

NS3/NS4A of the hepatitis C virus, that <strong>in</strong>activate RIG-I/MDA-5 signal<strong>in</strong>g<br />

by target<strong>in</strong>g IPS-1 as effective means to evade <strong>in</strong>nate immunity.<br />

1. Yoneyama M. & Fujita T., 2007. Function of RIG-I-like Receptors <strong>in</strong> Antiviral Innate<br />

Immunity. J. Biol. Chem. 282: 15315-15318. 2. Kato H. et al., 2005. Cell type-specific<br />

<strong>in</strong>volvement of RIG-I <strong>in</strong> antiviral response. Immunity. 23(1):19-28. 3. Kawai T. & Akira S.,<br />

2007. Antiviral signal<strong>in</strong>g through pattern recognition receptors. J Biochem. 141(2):137-45.<br />

4. Pichlmair A. et al., 2006. RIG-I-mediated antiviral responses to s<strong>in</strong>gle-stranded RNA<br />

bear<strong>in</strong>g 5'-phosphates. Science 314:997-1001. 5. Kato H. et al., 2008. Length-dependent<br />

recognition of double-stranded ribonucleic acids by ret<strong>in</strong>oic acid-<strong>in</strong>ducible gene-I and<br />

melanoma differentiation-associated gene 5. J Exp Med. 205(7):1601-10. 6. Kawai T. et al.,<br />

2005. IPS-1, an adaptor trigger<strong>in</strong>g RIG-I- and Mda5-mediated type I <strong>in</strong>terferon <strong>in</strong>duction.<br />

Nat Immunol. 6(10):981-988 7. Saha SK. et al., 2006. Regulation of antiviral responses by a<br />

direct and specific <strong>in</strong>teraction between TRAF3 and Cardif. Embo J. 25:3257-3263. 8. Sasai<br />

M. et al., 2006. NAK-associated prote<strong>in</strong> 1 participates <strong>in</strong> both the TLR3 and the cytoplasmic<br />

pathways <strong>in</strong> type I IFN <strong>in</strong>duction. J Immunol. 177:8676-8683. 9. Schröder M, et al, 2008. Viral<br />

target<strong>in</strong>g of DEAD box prote<strong>in</strong> 3 reveals its role <strong>in</strong> TBK1/IKKepsilon-mediated IRF activation.<br />

EMBO J. 27(15):2147-57. 10. Takahashi K. et al., 2006. Roles of caspase-8 and caspase-10 <strong>in</strong><br />

<strong>in</strong>nate immune responses to double-stranded RNA. J Immunol. 176:4520-4524. 11.<br />

Yoneyama M. et al., 2005. Shared and unique functions of the DExD/H-box helicases RIG-<br />

I, MDA5, and LGP2 <strong>in</strong> antiviral <strong>in</strong>nate immunity. J Immunol. 175:2851-58. 12. Komuro A. &<br />

Horvath CM., 2006. RNA- and virus-<strong>in</strong>dependent <strong>in</strong>hibition of antiviral signal<strong>in</strong>g by RNA<br />

helicase LGP2. J Virol. 80(24): 12332-12342. 13. Saito T. et al., 2007. Regulation of <strong>in</strong>nate<br />

antiviral defenses through a shared repressor doma<strong>in</strong> <strong>in</strong> RIG-I and LGP2. PNAS. 104(2):582-<br />

587.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!