09.04.2013 Views

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

C-Type Lect<strong>in</strong> Receptors<br />

C-type lect<strong>in</strong> receptors (CLRs) comprise a large family of receptors that<br />

b<strong>in</strong>d to carbohydrates <strong>in</strong> a calcium-dependent manner. The lect<strong>in</strong> activity of<br />

these receptors is mediated by conserved carbohydrate-recognition<br />

doma<strong>in</strong>s (CRDs). CLRs <strong>in</strong>clude Dect<strong>in</strong>-1, macrophage-<strong>in</strong>ducible C-type<br />

lect<strong>in</strong> (M<strong>in</strong>cle), the dendritic cell-specific ICAM3-grabb<strong>in</strong>g non<strong>in</strong>tegr<strong>in</strong> (DC-<br />

SIGN), DC-SIGN related (DC-SIGNR) and the circulat<strong>in</strong>g mannose b<strong>in</strong>d<strong>in</strong>g<br />

lect<strong>in</strong> (MBL). These CLRs share one or more CRD that were orig<strong>in</strong>ally found<br />

<strong>in</strong> the mannose-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> and are evolutionarily conserved. These<br />

receptors are <strong>in</strong>volved <strong>in</strong> fungal recognition and the modulation of the<br />

<strong>in</strong>nate immune response. CLRs are expressed by most cell types <strong>in</strong>clud<strong>in</strong>g<br />

macrophages and dendritic cells (DCs), which <strong>in</strong>ternalize various<br />

glycoprote<strong>in</strong>s and microbes for the purposes of clearance and antigen<br />

presentation to T lymphocytes.<br />

Dect<strong>in</strong>-1 plays an important role <strong>in</strong> antifungal <strong>in</strong>nate immunity. Dect<strong>in</strong>-1,<br />

which is expressed on phagocytes, is a specific receptor for b-glucans 1 . b-<br />

Glucans are glucose polymers found <strong>in</strong> the cell walls of fungi, <strong>in</strong>clud<strong>in</strong>g the<br />

yeasts Saccharomyces cerevisiae and Candida albicans. Dect<strong>in</strong>-1 is a type II<br />

transmembrane prote<strong>in</strong> with a CRD connected by a stalk to the<br />

transmembrane region, followed by a cytoplasmic tail conta<strong>in</strong><strong>in</strong>g an ITAMlike<br />

motif. Upon b<strong>in</strong>d<strong>in</strong>g to its ligand, Dect<strong>in</strong>-1 triggers phagocytosis and<br />

activation of Src and Syk k<strong>in</strong>ases, through its ITAM-like motif. Syk, <strong>in</strong> turn,<br />

<strong>in</strong>duces the CARD9-Bcl10-Malt1 complex lead<strong>in</strong>g to the production of<br />

reactive oxygen species (ROS), activation of NF-kB and subsequent<br />

secretion of pro<strong>in</strong>flammatory cytok<strong>in</strong>es 2, 3 . Dect<strong>in</strong>-1 signal<strong>in</strong>g has been<br />

shown to collaborate with TLR2 signal<strong>in</strong>g to enhance the responses<br />

triggered by each receptor 3, 4 . Furthermore, Dect<strong>in</strong>-1 can modulate cytok<strong>in</strong>e<br />

expression by <strong>in</strong>duc<strong>in</strong>g NFAT through the Ca 2+ -calc<strong>in</strong>eur<strong>in</strong>-NFAT pathway 5 .<br />

M<strong>in</strong>cle is another CLR expressed <strong>in</strong> phagocytes which signal<strong>in</strong>g leads to<br />

ITAM-dependent activation of NF-kB and NFAT. M<strong>in</strong>cle recognizes a variety<br />

of endogenous and exogenous stimuli, such as necrotic cells, mycobacteria<br />

and certa<strong>in</strong> fungi, <strong>in</strong>clud<strong>in</strong>g C. albicans and Malassezia species 6 . M<strong>in</strong>cle senses<br />

damaged cells by recogniz<strong>in</strong>g spliceosome-associated prote<strong>in</strong> 130 (SAP130),<br />

a soluble factor released by necrotic cells 7 . M<strong>in</strong>cle recognizes also fungal<br />

a-mannose, and the mycobacterial glycolipid, trehalose-6’6’-dimycolate<br />

(TDM, also known as cord factor), the most studied immunostimulatory<br />

component of Mycobacterium tuberculosis 8 . M<strong>in</strong>cle <strong>in</strong>teracts with the Fc<br />

receptor common g-cha<strong>in</strong> (FcRg), which triggers <strong>in</strong>tracellular signal<strong>in</strong>g<br />

through Syk lead<strong>in</strong>g to CARD9-dependent NF-kB activation. Syk <strong>in</strong>duces<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

also the mobilization of <strong>in</strong>tracellular calcium (Ca 2+ ) and the activation of the<br />

calc<strong>in</strong>eur<strong>in</strong>-NFAT pathway.<br />

Human DC-SIGN is of special <strong>in</strong>terest because it is <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>teraction<br />

of certa<strong>in</strong> DCs with several viruses (HIV-1, HCV, dengue virus, CMV, ebola<br />

virus) and other microbes, Leishmania and Candida species. This type II<br />

transmembrance prote<strong>in</strong> has a s<strong>in</strong>gle C-type lect<strong>in</strong> doma<strong>in</strong> and is expressed<br />

on immature monocyte-derived DCs. Five mouse DC-SIGN homologues<br />

exist. Only one of these named mDC-SIGN is expressed <strong>in</strong> a restricted<br />

fashion <strong>in</strong> DCs, while the others have a different tissue distribution and are<br />

termed SIGNR1, SIGNR2, SIGNR3 and SIGNR4 for SIGN-related prote<strong>in</strong>s 9 .<br />

Despite similarities <strong>in</strong> the carbohydrate recognition doma<strong>in</strong>s (CRDs) of the<br />

mouse homologues to the hDC-SIGN, the membrane proximal neck<br />

doma<strong>in</strong>s were much shorter.<br />

A molecular signal<strong>in</strong>g pathway <strong>in</strong>duced by the C-type lect<strong>in</strong> DC-SIGN that<br />

modulates TLR signal<strong>in</strong>g at the level of the transcription factor NF-kB has been<br />

identified. It has been demonstrated that pathogens trigger DC-SIGN on<br />

human DCs to activate the ser<strong>in</strong>e and threon<strong>in</strong>e k<strong>in</strong>ase Raf-1, which<br />

subsequently leads to acetylation of the NF-kB subunit p65, but only after TLR<strong>in</strong>duced<br />

activation of NF-kB. Acetylation of p65 both prolonged and <strong>in</strong>creased<br />

IL-10 transcription to enhance anti-<strong>in</strong>flammatory cytok<strong>in</strong>e response. It has been<br />

demonstrated that different pathogens such as Mycobacterium tuberculosis, M.<br />

leprae, Candida albicans, measles virus, and HIV-1 <strong>in</strong>teracted with DC-SIGN to<br />

activate the Raf-1-acetylation-dependent signal<strong>in</strong>g pathway to modulate<br />

signal<strong>in</strong>g by different TLRs 10 . Thus, this pathway is <strong>in</strong>volved <strong>in</strong> regulation of<br />

adaptive immunity by DCs to bacterial, fungal, and viral pathogens.<br />

MBL, a soluble C-type lect<strong>in</strong>, is an effector molecule of the <strong>in</strong>nate immune<br />

system. MBL plays a crucial role <strong>in</strong> <strong>in</strong>nate immunity aga<strong>in</strong>st yeast by enhanced<br />

complement activation and enhanced uptake of polymorphonuclear cells 11 .<br />

MBL b<strong>in</strong>ds to repetitive mannose and/or N-acetylglucosam<strong>in</strong>e residues on<br />

microorganisms, lead<strong>in</strong>g to opsonization and activation of the lect<strong>in</strong><br />

complement pathway. MBL also <strong>in</strong>teracts with carbohydrates on the<br />

glycoprote<strong>in</strong> (gp)120 of HIV-1. MBL may <strong>in</strong>hibit DC-SIGN-mediated uptake<br />

and spread of HIV 12 . Differences exist <strong>in</strong> polysaccharide recognition, endocytic<br />

capacities and microbe capture among CLRs. Furthermore, the ligands and<br />

physiological functions of many of the CLRs are still unknown. M<strong>in</strong>cle is one<br />

such orphan receptor. M<strong>in</strong>cle is the first example of a CLR that recognizes an<br />

endogenous nuclear ligand and necrotic cells 13 .<br />

1.Brown GD. et al. , 2003. Dect<strong>in</strong>-1 mediates the biological effects of beta glucans. J Exp<br />

Med. 197: 1119- 24. 2. Gross O. et al., 2006. Card9 controls a non-TLR signal<strong>in</strong>g pathway<br />

for <strong>in</strong>nate anti-fungal immunity. Nature. 442:651- 6. 3 Dennehy KM. & Brown GD., 2007.<br />

The role of the beta-glucan receptor Dect<strong>in</strong>-1 <strong>in</strong> control of fungal <strong>in</strong>fection . J Leukoc<br />

Biol.;82(2):253-8. 4. Gantner BN. et al., 2003. Collaborative <strong>in</strong>duction of <strong>in</strong>flammatory<br />

responses by dect<strong>in</strong>-1 and Toll- like receptor 2. J Exp Med. 197: 1107-17. 5. Goodridge HS.<br />

et al., 2007. Dect<strong>in</strong>-1 stimulation by Candida albicans yeast or zymosan triggers NFAT<br />

activation <strong>in</strong> macrophages and dendritic cells. J Immunol. 178(5):3107-15. 6. Yamasaki S. et<br />

al., 2009. C-type lect<strong>in</strong> M<strong>in</strong>cle is an activat<strong>in</strong>g receptor for pathogenic fungus, Malassezia.<br />

PNAS 106(6): 1897–1902. 7. Yamasaki S. et al., 2008. M<strong>in</strong>cle is an ITAM-coupled activat<strong>in</strong>g<br />

receptor that senses damaged cells. Nat Immunol. 9(10):1179-88. 8. Ishikawa E. et al., 2009.<br />

Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lect<strong>in</strong><br />

M<strong>in</strong>cle. J Exp Med. 206(13):2879-88. 9. Takahara K et al., 2004. Functional comparison of<br />

the mouse DC-SIGN, SIGNR1, SIGNR3 and Langer<strong>in</strong> C-type lect<strong>in</strong>s. Int Immunol. 16:819-829.<br />

10. den Dunnen J. et al., 2008. Innate signal<strong>in</strong>g by C-type lect<strong>in</strong> DC-SIGN dictates immune<br />

responses. Cancer Immunol Immunother. 26:605-610. 11. Van Asbeck et al., 2008. Mannose<br />

b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> plays a crucila role <strong>in</strong> <strong>in</strong>nate immunity aga<strong>in</strong>st yeast by enhanced comploment<br />

activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 8:229. 12. Ji X.<br />

et al., 2005. Mannose-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> b<strong>in</strong>ds to Ebola and Marburg envelope glycoprote<strong>in</strong>s,<br />

result<strong>in</strong>g <strong>in</strong> block<strong>in</strong>g of virus <strong>in</strong>teraction with DC-SIGN and complement-mediated virus<br />

neutralization. J Gen Virol. 86; 2535-2542. 13. Brown GD. 2008. Sens<strong>in</strong>g necrosis with M<strong>in</strong>cle.<br />

Nature Immunol. 9:1099-1100.<br />

55<br />

INNATE IMMUNITY 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!