02.05.2014 Views

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

114<br />

VII <strong>Tin</strong> oxygen and hydrogen compounds and complexes<br />

log<br />

log<br />

K (SnO 2 , cr, 298.15 K) = – (8.06 ± 0.11)<br />

ο<br />

10 s,0<br />

K (SnO 2 , am, 298.15 K) = – (7.22 ± 0.08).<br />

ο<br />

10 s,0<br />

Table VII-2: Experimental equilibrium data for the hydrolysis <strong>of</strong> tin(IV).<br />

Method Ionic media t/°C log10<br />

Sn(OH) 4 (aq) + 4 H + Sn 4+ + 4 H 2 O(l)<br />

β Reference<br />

Reported Recalculated (a) Accepted (b)<br />

sp 1 M (H/K)NO 3 25 − 0.17 (c) [1971NAZ/ANT]<br />

Sn(OH) 4 (aq) + 3 H + Sn(OH) 3+ + 3 H 2 O(l)<br />

sp 1 M (H/K)NO 3 25 0.66 (c) [1971NAZ/ANT]<br />

Sn(OH) 4 (aq) + 2 H + 2<br />

Sn(OH) +<br />

2 + 2 H 2 O(l)<br />

sp 1 M (H/K)NO 3 25 1.04 (c) [1971NAZ/ANT]<br />

Sn(OH) 4 (aq) + H + Sn(OH) +<br />

3 + H 2 O(l)<br />

sp 1 M (H/K)NO 3 25 0.97 (c) [1971NAZ/ANT]<br />

Sn(OH) 4 (aq) + H 2 O(l) Sn(OH) −<br />

5 + H +<br />

sol → 0 (NaOH) 25 − <strong>12</strong>.4 −11.28 ± 0.09 [1970BAR/KLI]<br />

sol 0.1 M NaClO 4<br />

→ 0<br />

25 − 7.75<br />

− 7.97<br />

− 8.38 ± 0.25<br />

− 8.60 ± 0.30<br />

− 8.38 ± 0.30<br />

− 8.60 ± 0.40<br />

[1997AMA/CHI]<br />

[1998ODA/AMA]<br />

Sn(OH) 4 (aq) + 2 H 2 O(l) Sn(OH) 2−<br />

6 + 2 H +<br />

sol → 0 (NaOH) 200 − 20.2 (d) − 20.16 ± 0.20 (d) [1973KLI/BAR]<br />

sol 0.1 M NaClO 4<br />

→ 0<br />

25 − 17.74<br />

− 18.38<br />

− 18.01 ± 0.11<br />

− 18.67 ± 0.15<br />

− 18.01 ± 0.20<br />

− 18.67 ± 0.30<br />

[1997AMA/CHI]<br />

[1998ODA/AMA]<br />

(a) Re-evaluated values, see Appendix A.<br />

(b) Accepted values corrected to molal scale. The accepted values reported in Appendix A are expressed on<br />

the molar or molal scales, depending on which quantities were used originally by the authors.<br />

(c) Using pK w = 13.74 for I = 1 M KNO 3 .<br />

(d) Using pK w = 11.2 for I = 0 and T = 200 °C.<br />

p<br />

ο<br />

These values were selected and correspond to Δ (SnO 2 , am, 298.15 K) =<br />

− (511.87 ± 0.78) kJ mol –1 fGm<br />

ο<br />

and Δ G (Sn(OH) 4 , aq, 298.15 K) = − (944.93 ± 0.66).<br />

f<br />

m<br />

The dissolution <strong>of</strong> SnO 2 (s) above pH 8 was explained by the formation <strong>of</strong><br />

either Sn(OH) −<br />

2<br />

5 [1970BAR/KLI], or Sn(OH) −<br />

6 [1973KLI/BAR], as well as by the<br />

presence <strong>of</strong> both species [1970KUR/BAR], [1997AMA/CHI], [1998ODA/AMA]. The<br />

hydrolysis constants reported in [1970KUR/BAR] for T = 373 K were later considered<br />

as unreliable by the authors themselves [1973KLI/BAR], since the equilibration time<br />

was too short to reach the equilibrium. The experimental methods applied in<br />

[1997AMA/CHI] and [1998ODA/AMA] (radiometry using<br />

113 Sn and ICP-MS<br />

(inductively coupled plasma mass spectrometry)) allowed much higher precision than<br />

CHEMICAL THERMODYNAMICS OF TIN, ISBN 978-92-64-99206-1, © <strong>OECD</strong> 20<strong>12</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!