02.05.2014 Views

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A Discussion <strong>of</strong> selected references<br />

363<br />

T/K<br />

ο<br />

p,m<br />

C (SnO, cr, T )/ T/K<br />

–1<br />

J·mol<br />

–1·K<br />

Table A-38 (continued)<br />

ο<br />

p,m<br />

C (SnO, cr, T )/ T/K<br />

–1<br />

J·mol<br />

–1·K<br />

ο<br />

p,m<br />

C (SnO, cr, T )/<br />

–1<br />

J·mol<br />

–1·K<br />

150.487 33.4975 201.833 40.2179 258.568 45.7156<br />

153.445 33.7506 206.248 40.2693 262.970 45.8173<br />

154.618 33.8703 210.157 40.9835 267.330 46.1717<br />

158.891 34.5569 2<strong>12</strong>.739 41.4576 270.928 46.5365<br />

163.663 35.1770 216.740 41.7885 275.995 46.7436<br />

165.199 35.3586 218.064 41.7254 280.258 46.7909<br />

168.878 35.9242 220.741 42.0032 284.513 47.0633<br />

169.868 35.9050 222.758 42.2019 298.925 47.2888<br />

174.008 36.6175 228.622 43.0354 294.190 47.4976<br />

179.713 37.4284 232.511 43.3621 298.343 47.7294<br />

183.489 37.7493 236.368 43.5969 302.467 48.0181<br />

187.599 38.6028 236.556 43.6048 306.599 48.2005<br />

191.262 38.9083 245.656 44.1805 310.707 48.3716<br />

In this temperature range the coefficients <strong>of</strong><br />

a) an exponential power function<br />

bx /<br />

y = ax<br />

(A.70)<br />

ο (SnO, cr, )/J·K −1 ·mol −1 77.816( /K) [ −25.295(K/ T )]<br />

Cp, m<br />

T = T<br />

and<br />

b) the Gompertz function<br />

y = aexp{ −exp[ b− cln( x)]}<br />

(A.71)<br />

o<br />

C<br />

p, m<br />

(SnO, cr, T )/J·K –1·mol –1 = 85.825 exp{− exp[3.5131 – 0.7<strong>12</strong>45 ln(T/K)]} were<br />

fitted to the data <strong>of</strong> Table A-38. Approaches a) and b) led to C o p, m<br />

(SnO, cr) =<br />

47.989 J·K –1·mol –1 and C<br />

o p, m<br />

(SnO, cr) = 48.093 J·K –1·mol –1 , respectively. A better<br />

agreement with Kostryukov et al.’s result was obtained from the linear regression <strong>of</strong> the<br />

data between 262.97 ≤ T/K ≤ 310.71, C (SnO, cr) = (47.756 ± 0.076) J·K –1·mol –1 .<br />

o<br />

p, m<br />

The entropy was calculated a) by nonlinear regression <strong>of</strong> C o / p, m<br />

T vs. T,<br />

o<br />

refitting the coefficients <strong>of</strong> ( ( Cp, m<br />

/ T )/J·K –2·mol –1 = 78.528 (T/K) [− 25.519(K/T) − 1] ) and<br />

o<br />

integrating with respect to T and b) by integrating the Gompertz function <strong>of</strong> C<br />

p, m<br />

with<br />

respect to ln (T/K), resulting in<br />

ο<br />

a) S<br />

m<br />

(SnO, cr, 298.15 K) = (57.180 ± 0.223) J·K –1·mol –1 and<br />

ο<br />

b) S<br />

m<br />

(SnO, cr, 298.15 K) = (57.105 ± 0.260) J·K –1·mol –1 .<br />

CHEMICAL THERMODYNAMICS OF TIN, ISBN 978-92-64-99206-1, © <strong>OECD</strong> 20<strong>12</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!