02.05.2014 Views

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

392<br />

A Discussion <strong>of</strong> selected references<br />

[1986BAN]<br />

Although the equilibrium:<br />

Sn(l) + O 2 (g) SnO 2 (s)<br />

(A.78)<br />

was studied many times using various techniques (see Table A-58), Bannister<br />

[1986BAN] used a novel reference electrode and studied Reaction (A.78) using<br />

potential measurements on the solid-electrolyte oxygen-concentration cell:<br />

Sn(l) SnO 2 (s) | ZrO 2 + Y 2 O 3 | (0.001O 2 + 0.999N 2 )<br />

with a reference electrode <strong>of</strong> {Pt + (U 0.38 Sc 0.62 )O 2 ± x } powder and, separately, a<br />

ο<br />

conventional porous Pt reference electrode. Between 673 and 1167 K, Δ rGm<br />

((A.78),<br />

T ) = − (571.4 + 0.2030 T ) ± 0.6 kJ·mol –1 . Third-law analysis <strong>of</strong> the results gives<br />

ο<br />

Δ rHm(A.78) = − (578.0 ± 1.4) kJ·mol –1 , in good agreement with the most recent<br />

calorimetric determination.<br />

Table A-58: Values <strong>of</strong> the standard molar Gibbs energy change Δ rGm<br />

((A.78),<br />

T )/kJ·mol –1 = A + B (T/K) obtained from the literature. The information in brackets<br />

indicates the reactive gas mixture or reference electrode used. Table modified from<br />

[1986BAN] with several additions.<br />

ο<br />

Reference T/K Technique A/ B/<br />

kJ·mol –1 –1<br />

kJ·K<br />

–1·mol<br />

r<br />

ο<br />

Δ G (1000 K)/<br />

m<br />

kJ·mol –1<br />

[1956PLA/MEY] 806 − 1107 Gas equilibrium (CO + CO 2 ) − 581.0 0.21<strong>12</strong> − 369.8<br />

[1960ATA/UTA] 973 − 1148 Gas equilibrium (H 2 + H 2 O) − 572.6 0.2032 − 369.4<br />

[1965BEL/ALC] 773 − 983 Solid-electrolyte (Ni + NiO) − 585.6 0.2132 − 372.4<br />

[1972OIS/HIR] 1173 − 1373 Solid-electrolyte (Ni + NiO) − 562.6 0.1953 − 367.3<br />

[1975PET/FAR] 773 − 1380 Solid-electrolyte (Ni + NiO) − 578.6 0.2085 − 370.1<br />

[1977SEE/STA] 990 − 1373 Solid-electrolyte (Ni + NiO) − 577.4 0.2088 − 368.6<br />

[1978RAM/BAR] 773 − 1173 Solid-electrolyte<br />

(Cu + Cu 2 O)<br />

− 573.8 0.2035 − 370.3<br />

[1978IWA/YAS] 1023 − <strong>12</strong>73 Solid-electrolyte (Ni + NiO) − 586.7 0.2144 − 372.3<br />

[1982SUG/KUW] 773 − 1165 Solid-electrolyte (Pb + PbO) − 574.2 0.2049 − 369.3<br />

[1983KAR/THO] 1041 − 1351 Solid-electrolyte (Pt/O 2 ) − 579.7 0.210 − 369.7<br />

[1983KAM/OST] 1073 − <strong>12</strong>73 Solid-electrolyte (Pt/air) − 576.6 0.2087 − 367.9<br />

[1986BAN] 673 − 1167<br />

(useful range)<br />

Solid-electrolyte − 571.4 0.2030 − 368.4<br />

[1994YAN/SUI] 720 − 990 − 574.33 0.202 − 372.33<br />

[2001MAL/EDW] 772 − <strong>12</strong>06 − 568.9 0.200 − 368.9<br />

The published gas compositions or cell potentials in Table A-58 have been<br />

ο<br />

converted to values <strong>of</strong> Δ G using JANAF values for CO(g), CO 2 (g), H 2 O(g), Cu 2 O(s),<br />

r<br />

m<br />

CHEMICAL THERMODYNAMICS OF TIN, ISBN 978-92-64-99206-1, © <strong>OECD</strong> 20<strong>12</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!