02.05.2014 Views

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VIII.1 Halide compounds<br />

153<br />

The value recommended by [1991GUR/VEY] falls within the error limits.<br />

Berezovskii et al. [1980BER/STE] measured the heat capacity <strong>of</strong> SnBr 2 (cr) in<br />

the 5.5 to 322 K temperature range, and reported 87 points (see Appendix A). For<br />

ο<br />

–1<br />

standard conditions the data are C p,m (SnBr 2 , cr, 298.15 K) = (78.97 ± 0.16) J·K<br />

–1·mol<br />

and S (SnBr 2 , cr, 298.15 K) = (153.0 ± 0.3) J·K –1·mol –1 .<br />

ο<br />

m<br />

Brumleve et al. [1992BRU/WAL] reviewed the molar heat capacities for the<br />

condensed phases <strong>of</strong> SnBr 2 . Pankratz [1984PAN] extrapolated the low-temperature<br />

measurements <strong>of</strong> [1980BER/STE]. Gardner and Preston [1991GAR/PRE] determined<br />

the molar heat capacity <strong>of</strong> the solid, at T = 350 to 500 K, and the liquid, at T = 520 to<br />

800 K, using differential scanning calorimetry. The heat capacity over the temperature<br />

ο<br />

p,m<br />

range <strong>of</strong> 350 to 800 K is given by: C (SnBr 2 , l, T )/J·K –1·mol –1 = (70.18 ± 0.33) +<br />

(0.04933 ± 0.00107) T/K. Their extrapolated value <strong>of</strong> the heat capacity at 298.15 K is<br />

78.60 J·K –1·mol –1 .<br />

Brumleve et al. [1992BRU/WAL] further combined the data from their own<br />

study with that <strong>of</strong> [1991GAR/PRE] to calculate the molar heat capacity <strong>of</strong> the solid<br />

from 298.15 to 507 K and <strong>of</strong> the liquid from 507 to 1000 K. The parameters for the<br />

polynomials describing the temperature variation <strong>of</strong> the molar heat capacities are listed<br />

in Table VIII-5.<br />

Table VIII-5: Parameters for the temperature variation <strong>of</strong> the molar heat capacity <strong>of</strong><br />

SnBr 2 using the equation (after [1992BRU/WAL]): C ο p,m<br />

(SnBr 2 , (s, l, or g), T )/<br />

J·K –1·mol –1 = A + B T/K + C (T/K) 2 + D (T/K) –2 for condensed-phase species (298 < T/K<br />

< 1000) and for the gas (298 < T/K < 6000). p° = 101325 Pa.<br />

A B C D<br />

SnBr 2 (s) 4.1097 × 10 1 1.2158 × 10 –1 − 6.3618 × 10 –5 6.4755 × 10 5<br />

SnBr 2 (l) 8.8328 × 10 1 − 4.6988 × 10 –3 4.0879 × 10 –5 − 5.4090 × 10 4<br />

SnBr 2 (g) 5.8169 × 10 1 1.5400 × 10 –5 − 1.7100 × 10 –9 − 1.5911 × 10 5<br />

Brumleve et al. [1992BRU/WAL] adopted the entropy data from<br />

[1980BER/STE] for the solid as 153.00 J·K –1·mol –1 ; they also calculated the entropy for<br />

the liquid and gas phases (176.9 J·K –1·mol –1 and 328.764 J·K –1·mol –1 respectively)<br />

employing the third-law procedure, the heat-capacity data as in Table VIII-5 and<br />

spectroscopic data. Error estimates are not given.<br />

The values <strong>of</strong> the heat capacity and entropy <strong>of</strong> SnBr 2 (cr) selected by this<br />

review are from Berezovskii et al. [1980BER/STE]:<br />

ο<br />

C p,m (SnBr 2 , cr, 298.15 K) = (78.97 ± 0.16) J·K –1·mol –1 ,<br />

ο<br />

S m (SnBr 2 , cr, 298.15 K) = (153.0 ± 0.3) J·K –1·mol –1 .<br />

CHEMICAL THERMODYNAMICS OF TIN, ISBN 978-92-64-99206-1, © <strong>OECD</strong> 20<strong>12</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!