02.05.2014 Views

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

Chemical Thermodynamics of Tin - Volume 12 - OECD Nuclear ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

II.3 Standard and reference conditions 33<br />

(atm)<br />

(bar)<br />

(atm)<br />

⎛<br />

rS r<br />

S = δ R ln p ⎞<br />

Δ − Δ ⎜ (bar) ⎟<br />

⎝ p ⎠<br />

= 0.1094 δ J·K –1·mol –1 (II.47)<br />

where δ is the net increase in moles <strong>of</strong> gas in the process.<br />

Similarly, the change in the Gibbs energy <strong>of</strong> a process between the two standard<br />

state pressures is:<br />

(atm)<br />

(bar)<br />

(atm)<br />

⎛<br />

rG r<br />

G = δ RT ln p ⎞<br />

Δ − Δ − ⎜ (bar) ⎟<br />

⎝ p ⎠<br />

= − 0.03263 δ kJ·mol –1 at 298.15 K. (II.48)<br />

(bar)<br />

(atm)<br />

Eq. (II.48) applies also to ΔfG<br />

− Δ<br />

fG<br />

, since the Gibbs energy <strong>of</strong> formation<br />

describes the formation process <strong>of</strong> a compound or complex from the reference<br />

states <strong>of</strong> the elements involved:<br />

Δ G<br />

− Δ G<br />

(bar)<br />

f f<br />

(atm)<br />

= − 0.03263 δ kJ·mol –1 at 298.15 K. (II.49).<br />

The changes in the equilibrium constants and cell potentials with the change in<br />

the standard state pressure follows from the expression for Gibbs energy changes,<br />

Eq. (II.48),<br />

(bar) (atm)<br />

(bar) (atm) ΔrG<br />

−ΔrG<br />

log<br />

10<br />

K − log<br />

10<br />

K = −<br />

RT ln 10<br />

E<br />

(atm)<br />

⎛ p ⎞<br />

ln ⎜ (bar) ⎟<br />

(atm)<br />

p<br />

⎛ p ⎞<br />

= δ<br />

⎝ ⎠<br />

= δlog10 ⎜ (bar) ⎟<br />

ln10 ⎝ p ⎠<br />

= 0.005717 δ (II.50)<br />

(bar)<br />

(bar) (atm) r r<br />

− E<br />

=<br />

Δ G<br />

−<br />

−Δ G<br />

nF<br />

⎛ p<br />

RT ln ⎜<br />

p<br />

= δ<br />

⎝<br />

nF<br />

(atm)<br />

(bar)<br />

(atm)<br />

⎞<br />

⎟<br />

⎠<br />

0.0003382<br />

= δ V at 298.15 K (II.51)<br />

n<br />

It should be noted that the standard potential <strong>of</strong> the hydrogen electrode is equal<br />

to 0.00 V exactly, by definition.<br />

H + e H (g) E = 0.00V<br />

+ − 1 ο def<br />

2 2<br />

(II.52).<br />

CHEMICAL THERMODYNAMICS OF TIN, ISBN 978-92-64-99206-1, © <strong>OECD</strong> 20<strong>12</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!