11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

This lemma is left to the rea<strong>de</strong>r; anyway, we shall complete the proof ofa generalization of Lemma 2.31 to the case of m 1 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(y 1 , . . .,y m ) in Section 2 below (Lemma 3.40).Coming back to the first <strong>aux</strong>iliary system (2.20), we therefore have obtaineda necessary and sufficient condition for the existence of (X, Y ): thefunctions Π k 1j 1 ,jshould satisfy the following system of first or<strong>de</strong>r partial differentialequations, just obtained from (2.30) by replacing the square func-2tions by the Pi functions:(2.33) ⎧( )Π0 − ( )0,0 Π 0 y 0,1 = − x Π1 0,0 · Π0 1,1 + Π1 0,1 · Π0 0,1( ),⎪⎨ Π0 − ( )0,1 Π 0 y 1,1 = − x Π0 0,1 · Π 0 0,1 − Π 1 0,1 · Π 0 1,1 + Π 0 1,1 · Π 0 0,0 + Π 1 1,1 · Π 0 0,1,( )Π1 − ( )0,0 Π 1 y 0,1 = − x Π0 0,0 · Π1 0,1 − Π1 0,0 · Π1 1,1 + Π0 0,1 · Π1 1,1 + Π1 0,1 · Π1 0,1 ,⎪⎩( )Π1 − ( )0,1 Π 1 y 1,1 = − x Π0 0,1 · Π1 0,1 + Π0 1,1 · Π1 0,0 .172.34. Second <strong>aux</strong>iliary system. It is now time to come back to the functionsG, H, L and M and to get rid of the <strong>aux</strong>iliary “Pi” functions. Unfortunately,we cannot invert directly the linear system (2.18), hence we must choose twospecific square functions as principal unknowns, and the best, from a combinatorialpoint of view, is to choose □ 0 xx and □ 1 yy. Remind that by (2.20),we have □ 0 xx = Π 0 0,0 and □ 1 yy = Π 1 1,1. For clarity, it will be useful to adoptthe notational equivalences(2.35) Θ 0 ≡ Π 0 0,0 and Θ 1 ≡ Π 1 1,1.We may therefore quasi-inverse the linear system (2.18), obtaining that thefour functions Π 1 0,0 , Π1 0,1 , Π0 0,1 and Π0 1,1 may be expressed in terms of thefunctions G, H, L and M and in terms of the remaining two principal unknowns(2.35), which yields:⎧Π 1 0,0 = □1 xx = −G(2.36)⎪⎨ Π 1 0,1 = □1 xy = −1 2 H + 1 2 Θ0 ,Π 0 0,1⎪⎩= □0 xy = 1 2 L + 1 2 Θ1 ,Π 0 1,1 = □0 yy = M.Replacing now each of these four expressions in the compatibility conditionsof the first <strong>aux</strong>iliary system (2.33), solving the four equations with respectto Θ 1 y , Θ0 x , Θ1 x and Θ0 y , we get after hygienic simplifications what we shallcall the second <strong>aux</strong>iliary system, which is a complete system of first or<strong>de</strong>r

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!