11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

or<strong>de</strong>r <strong>de</strong>rivatives of X and of the Y j :(3.26) ⎧⎪⎨⎪⎩R j 1 = Y jx + m∑l 1 =1R j 2 = Y jxx + m∑++++m∑l 1 =1m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1 l 3 =1m∑l 1 =1m∑y l 1xx ·m∑l 1 =1 l 2 =1[ ]y l 1x · Y j − y l 1 δj l 1X x +m∑[]y l 1x · 2 Y j − xy l 1 δj l 1X xx +m∑l 1 =1 l 2 =1y l 1x y l 2x · [−δ j l 1X y l 2],[]y l 1x y l 2x · Y jy l 1y − l 2 δj l 1X xy l 2 − δ j l 2X xy l 1 +m∑y l 1x y l 2x y l 3x · [−δ j l 1X y l 2y l 3]+[Y jy l 1 − 2 δj l 1X x]+y l 1x y l 2xx · [−δ j l 1X y l 2 − 2 δ j l 2X y l 1].However, since the notations in [GM2003] are different and since the generalcase of n 1 in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and m 1 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> isconsi<strong>de</strong>red there, it is certainly easier to reconstiture formulas (3.26) directlyby means of the inductive formulas <strong>de</strong>scribed in [Ol1986], [BK1989]).Analogously to the observation ma<strong>de</strong> in Section 2, we guess that thereexists a formal correspon<strong>de</strong>nce between the terms of R j 2 not involving yl xxand the explicit form of the equation yxx j = F j (x, y, y x ) equivalent to Y j XX =0. In the case m = 2, we claim that this formal correspon<strong>de</strong>nce also holdstrue. In<strong>de</strong>ed, it suffices to write formula (3.26) for R j 2 modulo the yxx, l whichyields two expressions in total analogy with the two explicit polynomialsappearing in the right-hand si<strong>de</strong> of (3.23):(3.27)⎧⎪⎨⎪⎩R 1 2 (mod y l xx) ≡ Y 1xx + y 1 x · {2Y 1xy 1 − X xx31}+ y2x · {2Y 1xy 2 }+ y1x y 1 x · {Y 1y 1 y 1 − 2 X xy 1 }++ yx 1 y2 x · {2Y 1y 1 y − 2 X } 2 xy 2 + y2x yx 2 · {Y } 1y 2 y + 2+ yx 1 y1 x y1 x · {−X y 1 y 1} + y1 x y1 x y2 x · {−2 X y 1 y 2} + y1 x y2 x y2 x · {−X y 2 y 2} ,R 2 2 (mod y l xx) ≡ Y 2xx + y 1 x · {2Y 2xy 1 }+ y2x · {2Y 2xy 2 − X xx}+ y1x yx 1 · {Y } 2y 1 y + 1+ y 1 x y2 x · {2Y 2y 1 y 2 − 2 X xy 1 }+ y2x y 2 x · {Y 2y 2 y 2 − 2 X xy 2 }++ y 1 x y1 x y2 x · {−X y 1 y 1} + y1 x y2 x y2 x · {−2 X y 1 y 2} + y2 x y2 x y2 x · {−X y 2 y 2} ,Except for inductive inspiration (see the formulation of Lemma 3.32 below),this observation will not be used further. At this stage, it helps at least

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!