11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

362By inspecting (2.5) above, we see that the equivalence between (i), (ii)and (iii) just below is obvious:Lemma 2.6. The following conditions are equivalent:(i) the differential equations Y X j Xk = 0 hold for 1 j, k n;(ii) the matrix equations D k (Y X ) = 0 hold for 1 k n;(iii) the matrix equations DX · D k (Y X ) = 0 hold for 1 k n;(iv) the matrix equations 0 = D k (DX)·Y X −D k (DY ) hold for 1 k n.Formally, in the sequel, it will be more convenient to achieve the explicitcomputations starting from condition (iv), since no matrix inversion at all isinvolved in it.Proof. In<strong>de</strong>ed, applying the total differentiation operator D k to the matrixequation (2.4) written un<strong>de</strong>r the equivalent form 0 = DX · Y X − DY , weget:(2.7) 0 = D k (DX) · Y X + DX · D k (Y X ) − D k (DY ),so that the equivalence between (iii) and (iv) is now clear.2.8. An explicit formula in the case n = 2. Thus, we can start to <strong>de</strong>velopeexplicitely the matrix equations(2.9) 0 = D k (DX) · Y X − D k (DY ).In it, some huge formal expressions are hid<strong>de</strong>n behind the symbol D k . Proceedinginductively, we start by examinating the case n = 2 thoroughly. Bydirect computations which require to be clever, we reconstitute some 3 × 3<strong>de</strong>terminants in the four (in fact three) <strong>de</strong>veloped equations (2.9). Aftersome work, the first equation is:(2.10)∣∣ ∣ ∣∣∣∣∣ X 10 = y x 1 x 1 · xX 1 1 xX 1 2 y ∣∣∣∣∣ X 2 xX 2 1 xX 2 2 y +Y x 1 Y x 2 Y y∣⎧ ∣⎨ ∣∣∣∣∣ X 1+ y x 1 ·⎩ 2 xX 1 1 xX 1 2 x 1 yX 2 xX 2 1 xX 2 2 x 1 yY x 1 Y x 2 Y x 1 y∣X 1 xX 1 1 xX 1 ∣∣∣∣∣ 2 x 1 x 1X 2 xX 2 1 xX 2 2 x 1 x+ 1Y x 1 Y x 2 Y x 1 x 1∣ ⎫∣∣∣∣∣ X 1 ∣ − x 1 xX 1 1 xX 1 2 y⎬X 2 x 1 xX 2 1 xX 2 2 yY x 1 x 1 Y x 2 Y ∣⎭ +y⎧ ∣ ⎫⎨ ∣∣∣∣∣ X 1+ y x 2 ·⎩ − xX 1 1 x 1 xX 1 1 y⎬X 2 xX 2 1 x 1 xX 2 1 yY x 1 Y x 1 x 1 Y ∣⎭ +y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!