11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Then by differentiating with respect to y x l each one of the following n + 1i<strong>de</strong>ntically satisfied equations:y ≡ Q ( x 1 ,... ,x n , A 1( x 1 ,... ,x n ,y,y x 1,... ,y x n),...,A n( x 1 ,... ,x n ,y,y x 1,...,y x n),An+1 ( x 1 ,... ,x n )),y,y x 1,...,y x ny x k ≡ Q x k(x 1 ,... ,x n , A 1( x 1 ,... ,x n ,y,y x 1,...,y x n),... ,227A n( x 1 ,... ,x n ,y,y x 1,... ,y x n),An+1 ( x 1 ,... ,x n ,y,y x 1,... ,y x n)),we get the following n + n 2 equations:0 ≡ Q a 1 ∂A1 + · · · + Q ∂y a n ∂An + Q ∂An+1x l ∂y an+1 x l ∂y x lδ k,l = Q x k a 1 ∂A1 + · · · + Q ∂y x x l k a n ∂An + Q ∂y x x l k ∂An+1an+1 ∂y x l(k, l =1··· n).Fixing any l ∈ {1, . . ., n}, thanks to the assumption (Levi non<strong>de</strong>generacy)that the Jacobian <strong>de</strong>terminant:∣ Q□ = □ ( a 1 · · · Q a n Q a n+1 ∣∣∣∣∣∣∣a 1 | · · · |a n |a n+1) Q:=x 1 a 1 · · · Q x 1 a n Q x 1 a n+1. . ..,. .∣Q x n a 1 · · · Q x n a n Q x n a n+1does not vanish, we may solve — just by means of Cramer’s rule — for then + 1 unknowns ∂Aµ , the above system of n + 1 equations, and this gives∂y x lus:(7.28)∂A µ∂y x l= □ [0 µ 1+l ]□ := □(a 1| · · · |a µ−1 |0 1+l |a µ+1 | · · · |a n+1 )□(a 1 | · · · |a µ−1 |a µ |a µ+1 | · · · |a n+1 ) ,where 0 1+l is a specific notation to <strong>de</strong>note the column consisting of n + 1zeros piled up, except at the (1 + l)-th level from its top, where instead of 0,one reads 1, and where, as our notation with vertical bars helps to guess::=∣□ µ [0 1+l ] = □(a 1| · · · |a µ−1 | µ 0 1+l |a µ+1 | · · · |a n+1 ) :=∣Q a 1 · · · Q a µ−1 0 Q a µ+1 · · · Q a n+1 ∣∣∣∣∣∣∣∣∣∣∣Q x 1 a 1 · · · Q x 1 a µ−1 0 Q x 1 a µ+1 · · · Q x 1 a n+1·· · · · ·· ·· ·· · · · ··Q x k a 1 · · · Q x k a µ−1 1 Q x k a µ+1 · · · Q .x k a n+1·· · · · ·· ·· ·· · · · ··Q x n a 1 · · · Q x n a µ−1 0 Q x n a µ+1 · · · Q x n a n+1To avoid any ambiguity, we shall sometimes put the integer µ in the upperin<strong>de</strong>x position of the vertical bar to indicate precisely which column is concerned.As is clear, this notation allows one to view and to remember what

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!