11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Open problem 1.17. For n = 2 establish a complete list of normal forms ofall possible systems (1.?) according to their <strong>Lie</strong> symmetry group. In case ofsuccess, classify Levi non<strong>de</strong>generate real analytic hyper<strong>sur</strong>faces of C 3 up tobiholomorphisms.361§2. COMPLETELY INTEGRABLE SYSTEMS OFSECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS2.1. Prolongation of a point transformation to the second or<strong>de</strong>r jetspace. Let K = R or C, let n ∈ N, suppose n 2, let x = (x 1 , . . .,x n ) ∈K n and let y ∈ K. According to the main assumption of Theorem 1.7, wehave to consi<strong>de</strong>r a local K-analytic diffeomorphism of the form((2.2) xj 1, y ) ↦−→ ( X j (x j 1, y), Y (x j 1, y) ) ,which transforms the system (1.8) to the system Y X i 1X i 2 = 0, 1 j 1 , j 2 n. Without loss of generality, we shall assume that this transformation isclose to the i<strong>de</strong>ntity. To obtain the precise expression (2.35) of the transformedsystem (1.8), we have to prolong the above diffeomorphism to thesecond or<strong>de</strong>r jet space. We introduce the coordinates (x j , y, y x j 1 , y x j 1x j 2 ) onthe second or<strong>de</strong>r jet space. Let(2.3) D k := ∂∂x k + y x k∂n∑∂y +l=1y x k x l∂,∂y x lbe the k-th total differentiation operator. According to [Ol1986, BK1989,Ol1995], for the first or<strong>de</strong>r partial <strong>de</strong>rivatives, one has the (implicit, compact)expression:⎛ ⎞ ⎛D 1 X 1 · · · D 1 X n −1 ⎛ ⎞D 1 Y(2.4)⎝Y X 1.Y X n⎠ = ⎝⎞. · · · .⎠D n X 1 · · · D n X n⎝.D n Ywhere (·) −1 <strong>de</strong>notes the inverse matrix, which exists, since the transformation(2.2) is close to the i<strong>de</strong>ntity. For the second or<strong>de</strong>r partial <strong>de</strong>rivatives,again according to [Ol1986, BK1989, Ol1995], one has the (implicit, compact)expressions:⎛ ⎞ ⎛Y X j X 1 D 1 X 1 · · · D 1 X n ⎞−1 ⎛ ⎞D 1 Y X j(2.5) ⎝.⎠ = ⎝. · · · .⎠ ⎝.⎠ ,Y X j X n D n X 1 · · · D n X n D n Y X jfor j = 1, . . ., n. Let DX <strong>de</strong>note the matrix (D i X j ) 1jn1in, where i is thein<strong>de</strong>x of lines and j the in<strong>de</strong>x of columns, let Y X <strong>de</strong>note the column matrix(Y X i) 1inand let DY be the column matrix (D i Y ) 1in.⎠ ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!