11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1Now, taking account of the factor , we can re-express all the terms[∆] 2of (3.55) as sums of square functions:⎧ ( ) ( )□ j − □ j =y l 1y l 2 y l 1y l 3(3.56)⎪⎨⎪⎩=−−+y l 3m∑k=0; k≠jy l 2□ k y l 3y k □ j y l 1y l 2 −m∑□ j y l 1y l 2 □k y l 3y− kk=0m∑k=0; k≠j□ k y l 2y k □ j y l 1y l 3 +m∑□ j y l 1y l 3 □k y l 2y. kk=0m∑k=0; k≠jm∑k=0; k≠j□ k y l 1y l 2□ j y l 3y k −□ k y l 1y l 3□ j y l 2y k +Finally, we observe that in the two pairs of sums having k ≠ j appearingin the lines 2 and 4 just above, we can inclu<strong>de</strong> the term k = j in each pair,because these two terms are immediately killed insi<strong>de</strong> the correspondingpair. In conclusion, after a final obvious killing of four (among six) completesums in this modification of (3.56), we obtain the <strong>de</strong>sired formula (3.41),with two sums. This completes the proof of Lemma 3.40 and also at thesame occasion, the proof of Lemma 2.31.3.57. Compatibility conditions for the first <strong>aux</strong>iliary system. Accordingto the (approximate) i<strong>de</strong>ntities (3.3), taking account of the explicit <strong>de</strong>finitions(3.30) of the square functions, we have{ □0 ∼ xx = Xxx , □ 0 ∼xy l 1 = Xxy l 1 , □ 0 ∼y l 1y l 2 = Xy l 1y l 2 ,(3.58)□ j xx ∼ = Y jxx, □ j xy l 1∼ = Yjxy l 1 , □j y l 1y l 2∼ = Yjy l 1y l 2 .Consequently, the first <strong>aux</strong>iliary system (3.38) looks approximatively like acomplete second or<strong>de</strong>r system of partial differential equations in the (m+1)in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> (x, y) and in the (m+1) <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> (X, Y ).By means of elementary algebraic operations, one may transform this systemin a true second or<strong>de</strong>r complete system, solved with respect to the topor<strong>de</strong>r <strong>de</strong>rivatives, namely of the form{Xxx = Λ 0 0,0 , X xy l 1 = Λ 0 0,l 1, X y l 1y l 2 = Λ 0 l 1 ,l 2,(3.59)Y jxx = Λ j 0,0,Y jxy l 1 = Λj 0,l 1, Y y l 1y l 2 = Λ j l 1 ,l 2,where the Λ k 1j 1 ,j 2are local K-analytic functions of (x, y l 1, X, Y j , X x , X y l 1 , Y jx , Y jy l 1 ).For such a system, the compatibility conditions [which are necessary andsufficient for the existence of a solution (X, Y )] follow by obvious cross39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!