11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

305II: Explicit prolongations of infinitesimal <strong>Lie</strong> symmetriesTable of contents1. Jet spaces and prolongations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305.2. One in<strong>de</strong>pen<strong>de</strong>nt variable and one <strong>de</strong>pen<strong>de</strong>nt variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.3. Several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and one <strong>de</strong>pen<strong>de</strong>nt variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320.4. One in<strong>de</strong>pen<strong>de</strong>nt variable and several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339.5. Several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348.§1. JET SPACES AND PROLONGATIONS1.1. Choice of notations for the jet space variab<strong>les</strong>. Let K = R or C. Letn 1 and m 1 be two positive integers and consi<strong>de</strong>r two sets of variab<strong>les</strong>x = (x 1 , . . .,x n ) ∈ K n and y = (y 1 , . . .,y m ). In the classical theoryof <strong>Lie</strong> symmetries of partial differential equations, one consi<strong>de</strong>rs certaindifferential systems whose (local) solutions should be mappings of the formy = y(x). We refer to [Ol1986] and to [BK1989] for an exposition of thefundamentals of the theory. Accordingly, the variab<strong>les</strong> x are usually calledin<strong>de</strong>pen<strong>de</strong>nt, whereas the variab<strong>les</strong> y are called <strong>de</strong>pen<strong>de</strong>nt. Not to enter insubtle regularity consi<strong>de</strong>rations (as in [Me2005b]), we shall assume C ∞ -smoothness of all functions throughout this paper.Let κ 1 be a positive integer. For us, in a very concrete way (withoutfiber bund<strong>les</strong>), the κ-th jet space Jn,m κ consists of the space Kn+m+m(n+m)! n! m!equipped with the affine coordinates((1.2) x i , y j , y j i 1, y j i 1 ,i 2, . . ....,y j )i 1 ,i 2 ,...,i κ ,having the symmetries(1.3) y j i 1 ,i 2 ,...,i λ= y j i σ(1) ,i σ(2) ,...,i σ(λ),for every λ with 1 λ κ and for every permutation σ of the set{1, . . ., λ}. The variable y j i 1 ,i 2 ,...,i λis an in<strong>de</strong>pen<strong>de</strong>nt coordinate correspondingto the λ-th partial <strong>de</strong>rivativeλ y j. So the symmetries (1.3) are∂∂x i 1∂x i 2···∂x i λnatural.In the classical <strong>Lie</strong> theory ([OL1979], [Ol1986], [BK1989]), all the geometricobjects: point transformations, vector fields, etc., are local, <strong>de</strong>fined ina neighborhood of some point lying in some affine space K N . However, inthis paper, the original geometric motivations are rapidly forgotten in or<strong>de</strong>rto focus on combinatorial consi<strong>de</strong>rations. Thus, to simplify the presentation,we shall not introduce any special notation to speak of certain local

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!