11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

must be equal to the number of indices k α minus γ. This rule is confirmedby examining the term (second and third line of (3.24))∑ [δ k 1,k 2i 1 , i 2Y x i 3y 2 + δ k 1,k 2i 3 , i 1Y x i 2y 2 + δ k 1,k 2i 2 , i 3Y x i 1y 2−(3.45)k 1 ,k 2]−δ k 1i 1X k 2x i 2x i 3y − δk 1i 2X k 2x i 1x i 3y − δk 1i 3X k 2yx i 1x i 2y k1 y k2 ,<strong>de</strong>veloping [3 Y xy 2 − 3 X x 2 y] (y 1 ) 2 .Also, we may examine the following term331(3.46)n∑k 1 ,k 2 =1[δ k 1,k 2i 1 , i 2Y x i 3x i 4y 2 + δ k 1,k 2i 1 , i 3Y x i 2x i 4y 2 + δ k 1,k 2i 1 , i 4Y x i 2x i 3y 2++δ k 1,k 2i 2 , i 3Y x i 1x i 4y 2 + δ k 1,k 2i 2 , i 4Y x i 1x i 3y 2 + δ k 1,k 2i 3 , i 4Y x i 1x i 2y 2−−δ k 1i 1X k 1x i 2x i 3x i 4y − δk 1i 2X k 1x i 1x i 2x i 3y − δk 1i 3X k 1x i 1x i 2x i 4y −−δ k 1i 4X k 1x i 1x i 2x i 3y]y k1 y k2 ,extracted from Y i1 ,i 2 ,i 3 ,i 4and <strong>de</strong>veloping [6 Y x 2 y 2 − 4 X x 3 y] (y 1 ) 2 . Wewould like to mention that we have not written the complete expression ofY i1 ,i 2 ,i 3 ,i 4, because it would cover two and a half printed pages.By inspecting the way how the indices are permuted in the multiple Kroneckersymbols of the first two lines of this expression (3.46), we observethat the six terms correspond exactly to the six possible choices of two complementaryor<strong>de</strong>red coup<strong>les</strong> of integers in the set {1, 2, 3, 4}, namely(3.47){1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3},{2, 3} ∪ {1, 4}, {2, 4} ∪ {1, 3}, {3, 4} ∪ {1, 2}.At this point, we start to <strong>de</strong>vise the general combinatorics. Before proceedingfurther, we need some notation.3.48. Permutation groups. For every p ∈ N with p 1, we <strong>de</strong>note by S pthe full permutation group of the set {1, 2, . . ., p − 1, p}. Its cardinal equalsp!. The letters σ and τ will be used to <strong>de</strong>note an element of S p . If p 2, andif q ∈ N satisfies 1 q p−1, we <strong>de</strong>note by S q p the subset of permutationsσ ∈ S p satisfying the two collections of inequalities(3.49)σ(1) < σ(2) < · · · < σ(q) and σ(q +1) < σ(q +2) < · · · < σ(p).The cardinal of S q p equals C q p = p!q! (p−q)! .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!