11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

208Proof. Reading the three formulas just preceding, by adding the first one tothe second one multiplied by y x = Q x together with the third one multipliedby F = Q xx , one visibly sees that the coefficients of both ∂ ∂a and ∂ ∂b dovanish in the obtained sum, as announced.Keeping in mind — so as to avoid any confusion — that the same letter xis used to <strong>de</strong>note simultaneously the in<strong>de</strong>pen<strong>de</strong>nt variable of the differentialequation y xx = F(x, y, y x ) and the non-parameter variable of the associatedsubmanifold of solutions y = Q(x, a, b), we may now write this two-waystransfer D ←→ ∂ x exactly as we did in the above three equations, namelysimply as an equality between two <strong>de</strong>rivations living in the (x, y, y x )-spaceand in the (x, a, b)-space:D = ∂ x .Lemma. With G = G(x, y, y x ) being any local K-analytic function in the(x, y, y x )-space, the three second-or<strong>de</strong>r <strong>de</strong>rivatives G yxy x, G yyx and G yy expressas follows in terms of the second-or<strong>de</strong>r jet Jx,a,b 2 (T) of the <strong>de</strong>finingfunction T :G yxy x= Q b Q b∆ 2+ T a∆ 3 (+ T b∆ 3 (G yyx = − Q b Q xb∆ 2+ T (a∆ 3+ T b∆ 3 (G yy = Q xb Q xb∆ 2+ T (a∆ 3+ T b∆ 3 (T aa − 2 Q a Q b∆ 2 T ab + Q a Q a∆ 2 T bb +∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ QQ a Q b Q bb ∣∣∣ ∣∣∣ Qa − 2 QQ xb Q a Q b Q ab ∣∣∣ ∣∣∣ Qb + Qxbb Q xb Q b Q b Q aa ∣∣∣b +xab Q xb Q xaa∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ Q− Q a Q a Q bb ∣∣∣ ∣∣∣ Qa + 2 QQ xa Q a Q a Q ab ∣∣∣ ∣∣∣ Qb − Qxbb Q xa Q b Q a Q aa ∣∣∣bxab Q xa Q xaaT aa + Q a Q xb + Q b Q xa∆ 2T ab − Q a Q xa∆ 2 T bb +∣ ∣ ∣∣∣ Q− Q a Q b Q bb ∣∣∣xa + ( ) ∣ ∣ ∣ ∣)QQ xb Q a Q xb + Q b Q xa ∣∣ Q b Q ab ∣∣∣ ∣∣∣ Q− Qxbb Q xb Q b Q b Q aa ∣∣∣xb +xab Q xb Q xaa∣ ∣ ∣∣∣ QQ a Q a Q bb ∣∣∣xa − ( ) ∣ ∣ ∣ ∣)QQ xa Q a Q xb + Q b Q xa ∣∣ Q a Q ab ∣∣∣ ∣∣∣ Q+ Qxbb Q xa Q b Q a Q aa ∣∣∣xbxab Q xa Q xaaT aa − 2 Q xa Q xb∆ 2T ab + Q xa Q xa∆ 2 T bb +∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ QQ xa Q b Q bb ∣∣∣ ∣∣∣ Qxa − 2 QQ xb Q xa Q b Q ab ∣∣∣ ∣∣∣ Qxb + Qxbb Q xb Q xb Q b Q aa ∣∣∣xb +xab Q xb Q xaa∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ Q− Q xa Q a Q bb ∣∣∣ ∣∣∣ Qxa + 2 QQ xa Q xa Q a Q ab ∣∣∣ ∣∣∣ Qxb − Qxbb Q xa Q xb Q a Q aa ∣∣∣xb .xab Q xa Q xaaProof. We apply the operatoror<strong>de</strong>r <strong>de</strong>rivative G yx , namely we consi<strong>de</strong>r:∂∂y x, wiewed in the (x, a, b)-space, to the first∂ yx(Gyx)=∂∂y x[− Q b∆ T a + Q a∆ T b],

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!