11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

in (3.11). The second equation that we obtain, namely for y 2 xx, is as follows:27(3.15)∣ 0 = yxx 2 ·X x X y 1 X y 2 ∣∣∣∣∣ X x X y 1 X xxYx 1 Y 1yY 1∣1 y +2YYx 2 Y 2yY 2x 1 Y 1yY 1∣1 xx1 yY 22 x Y 2yY 2 ∣ +2 xx⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X xy 1 ∣∣∣∣∣ ⎬+ yx 1 ·⎩ 2 Y x 1 Y 1yY 1 1 xy 1Yx 2 Y 2yY 2 ⎭ +1 xy⎧ ∣ 1 ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X xy 2 ∣∣∣∣∣ + yx 2 ·⎩ 2 Y x 1 Y X xx X y 1 X y 2 ∣∣∣∣∣ ⎬ 1yY 1 1 xy −2Y 1Yx 2 Y 2yY 2xx Y 1yY 1∣1 y 21 xyY 22 xx Y 2yY 2 ⎭ +1 y 2⎧∣⎫ ⎨+ yx 1 y1 x ·X x X y 1 X y 1 y ∣∣∣∣∣ 1 ⎬ ⎩Yx 1 Y 1yY 1∣1 y 1 y 1Yx 2 Yy 2 Y 2 ⎭ +1 y 1 y⎧ ∣ 1 ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X y 1 y ∣∣∣∣∣ 2+ yx 1 yx2 ⎩ 2 Y x 1 Y X xy 1 X y 1 X y 2 ∣∣∣∣∣ ⎬ 1yY 1 1 y 1 y − 22Y 1Yx 2 Y 2yY 2xyY 1∣1 yY 1 1 y 21 y 1 yY 22 xyY 2 1 yY 2 ⎭ +1 y⎧∣ 2 ∣⎫ ⎨X x X y 1 X y 2 y ∣∣∣∣∣ 2X xy 2 X y 1 X y 2 ∣∣∣∣∣ ⎬+ yx 2 yx 2 ·⎩Yx 1 Y 1yY 1∣1 y 2 y − 22Y 1Yx 2 Y 2yY 2xyY 1∣2 yY 1 1 y 21 y 2 yY 22 xyY 2 2 yY 2 ⎭ +1 y 2⎧ ∣⎨ ∣∣∣∣∣ X y 1 y 1 X y 1 X ∣⎫ ⎧ ∣y ∣∣∣∣∣ 2 ⎬ ⎨ ∣∣∣∣∣ X y 1+ yx 1 yx 1 yx 2 ·⎩ − Y 1y1y Y 1 1 yY 1y 2 X y 1 X ∣⎫ y ∣∣∣∣∣ 2 ⎬ 1 y 2Y 2y 1 yY 2 1 yY 2 ⎭ + y1 x yx 2 yx 2 ·⎩ −2 Y 1y1y Y 1 2 yY 1 1 y 21 yY 22 y 1 yY 2 2 yY 2 ⎭ +1 y⎧ ∣ 2⎨ ∣∣∣∣∣ X y 2 y 2 X y 1 X y 2+ yx 2 yx 2 yx 2 ·⎩ − Y 1y2y Y 1 2 yY 1 1 y 2Y 2y 2 yY 2 2 yY 2 1y 2 ∣ ∣∣∣∣∣⎫⎬⎭ .Importantly, the obtained formulas seem to be analogous to the formula(2.9), since we observe that the coefficients of the <strong>de</strong>gree three polynomialin the y l x are modifications of the Jacobian <strong>de</strong>terminant ∆(x|y1 |y 2 ).To <strong>de</strong>scribe the un<strong>de</strong>rlying combinatorics, let us observe that there existexactly six possible distinct second or<strong>de</strong>r <strong>de</strong>rivatives: xx, xy 1 , xy 2 , y 1 y 1 ,y 1 y 2 and y 2 y 2 . There are also exactly three columns in the Jacobian <strong>de</strong>terminant(3.2). By replacing each of the three columns of first or<strong>de</strong>r <strong>de</strong>rivativesby a column of second or<strong>de</strong>r <strong>de</strong>tivatives (leaving X, Y 1 and Y 2 unchanged),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!