11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

+ ∑k 1 ,k 2 ,k 3 ,k 4[−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y 2 − δ k 2,k 3 ,k 1i 1 , i 2 , i 3X k 4y 2 − δ k 3,k 2 ,k 1i 1 , i 2 , i 3X k 4y 2 −−δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y 2 − δ k 3,k 1 ,k 4i 1 , i 2 , i 3X k 2y 2 − δ k 1,k 3 ,k 4i 1 , i 2 , i 3X k 2+ ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y − δ k 2,k 3 ,k 1i 1 , i 2 , i 3X k 4y − δ k 3,k 1 ,k 2i 1 , i 2 , i 3X k 4yk 1 ,k 2 ,k 3 ,k 4+ ∑k 1 ,k 2 ,k 3[δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y y − δ k 1,k 2i 1 , i 2X k 3x i 3 − δk 1,k 2i 1 , i 3X k 3x i 2 − δk 1,k 2i 2 , i 3X k 3x i 1327]yy 2 k1 y k2 y k3 ,k 4+]y k1 ,k 2y k3 ,k 4+]y k1 ,k 2 ,k 3++ ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y − δ k 4,k 1 ,k 2i 1 , i 2 , i 3X k 3y − δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y − δ k 2,k 3 ,k 4i 1 , i 2 , i 3X k 1yk 1 ,k 2 ,k 3 ,k 43.25. Comments, analysis and induction. First of all, by comparing thisexpression of Y i1 ,i 2 ,i 3with the expression (2.8) of Y 3 , we easily guess a partof the (inductional) dictionary beween the cases n = 1 and the case n 1.For instance, the three monomials [·](y 1 ) 3 , [·] y 1 y 2 and [·] (y 1 ) 2 y 2 in Y 3 arereplaced in Y i1 ,i 2 ,i 3by the following three sums:(3.26) ∑∑∑[·]y k1 y k2 y k3 , [·] y k1 y k2 ,k 3, and [·]y k1 y k2 y k3 ,k 4.k 1 ,k 2 ,k 3 k 1 ,k 2 ,k 3 k 1 ,k 2 ,k 3 ,k 4Similar formal correspon<strong>de</strong>nces may be observed for all the monomials ofY 1 , Y i1 , of Y 2 , Y i1 ,i 2and of Y 3 , Y i1 ,i 2 ,i 3. Generally and inductively speaking,the monomial(3.27) [·](y λ1 ) µ1 · · ·(y λd ) µ dappearing in the expression (2.25) of Y κ should be replaced by a certainmultiple sum generalizing (3.26). However, it is necessary to think, to pauseand to search for an appropriate formalism before writing down the <strong>de</strong>siredmultiple sum.The jet variable y λ1 should be replaced by a jet variable corresponding toa λ 1 -th partial <strong>de</strong>rivative, say y k1 ,...,k λ1, where k 1 , . . ., k λ1 = 1, . . .,n. Forthe moment, to simplify the discussion, we leave out the presence of a sumof the form ∑ k 1 ,...,k λ1. The µ 1 -th power (y λ1 ) µ 1should be replaced not by(y k1 ,...,k λ1) µ1,but by a product of µ1 different jet variab<strong>les</strong> y k1 ,...,k λ1of lengthλ, with all indices k α = 1, . . .,n being distinct. This rule may be confirmedby inspecting the expressions of Y i1 , of Y i1 ,i 2and of Y i1 ,i 2 ,i 3. So y k1 ,...,k λ1should be <strong>de</strong>veloped as a product of the form(3.28) y k1 ,...,k λ1y kλ1 +1,...,k 2λ1 · · · y k(µ1 −1)λ 1 +1,...,k µ1 λ 1,where(3.29) k 1 , . . .,k λ1 , . . .,k µ1 λ 1= 1, . . ., n.]y k1 y k2 ,k 3 ,k 4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!