11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

213+T ah3Q 2 a Q b∆(aa|b)∆(b|bb) + 3Q 2 a Q b∆(a|ab)∆(b|bb) − 3Q 3 a ∆(ab|b)∆(b|bb) − 3Q3 a ∆(a|bb)∆(b|bb)−− 6Q aQ 2 b ∆(aa|b)∆(b|ab) − 6QaQ2 b ∆(a|ab)∆(b|ab) + 6Q2 a Q b∆(ab|b)∆(b|ab) + 6Q 2 a Q b∆(a|bb)∆(b|ab)−− 3Q 3 b ∆(aa|b)∆(b|aa) − 3Q3 b ∆(a|ab)∆(b|aa) + 3QaQ2 b ∆(ab|b)∆(b|aa) + 3QaQ2 b ∆(a|bb)∆(b|aa)−− 2Q aQ b Q aa∆(a|b)∆(b|bb) + 2Q 2 b Qaa∆(a|b)∆(b|ab) + 2QaQ bQ ab ∆(a|b)∆(b|ab) − 2Q 2 b Q ab∆(a|b)∆(b|aa)−− Q 2 aQ b ∆(a|b)∆(ab|bb) − Q 2 aQ b ∆(a|b)∆(b|abb) + 2Q aQ 2 b ∆(a|b)∆(b|aab) − Q3 b ∆(a|b)∆(ab|aa) − Q3 b ∆(a|b)∆(b|aaa)++ 2Q 2 aQ ab ∆(a|b)∆(b|bb) − 2Q aQ b Q ab ∆(a|b)∆(b|ab) − 2Q 2 aQ bb ∆(a|b)∆(b|ab) + 2Q aQ b Q bb ∆(a|b)∆(b|aa)++ Q 3 a∆(a|b)∆(b|bbb) − 2Q 2 aQ b ∆(a|b)∆(bb|ab) − 2Q 2 aQ b ∆(a|b)∆(b|abb) + Q aQ 2 b ∆(a|b)∆(bb|aa) + QaQ2 bi+∆(a|b)∆(b|aab)+T bh3Q 2 a Q b∆(a|bb)∆(aa|b) + 3Q 2 a Q b∆(a|bb)∆(a|ab) − 3Q 3 a ∆(a|bb)∆(ab|b) − 3Q3 a ∆(a|bb)∆(a|bb)−− 6Q aQ 2 b ∆(a|ab)∆(aa|b) − 6QaQ2 b ∆(a|ab)∆(a|ab) + 6Q2 a Q b∆(a|ab)∆(ab|b) + 6Q aQ aQ b ∆(a|ab)∆(a|bb)++ 3Q 2 b ∆(a|aa)∆(aa|b) + 3Q2 b ∆(a|aa)∆(a|ab) − 3QaQ2 b ∆(a|aa)∆(ab|b) − 3QaQ2 b ∆(a|aa)∆(a|bb)++ 2Q aQ b Q aa∆(a|b)∆(a|bb) − 2Q 2 b Qaa∆(a|b)∆(a|ab) − 2QaQ bQ ab ∆(a|b)∆(a|ab) + 2Q 2 b Q ab∆(a|b)∆(a|aa)++ Q 2 aQ b ∆(a|b)∆(aa|bb) + Q 2 aQ b ∆(a|b)∆(a|abb) − 2Q aQ 2 b ∆(a|b)∆(a|aab) + Q3 b ∆(a|b)∆(aa|aa) + Q3 b ∆(a|b)∆(a|aaa)−− 2Q 2 aQ ab ∆(a|b)∆(a|bb) + 2Q aQ b Q ab ∆(a|b)∆(a|ab) + 2Q 2 aQ bb ∆(a|b)∆(a|ab) − 2Q aQ b Q bb ∆(a|b)∆(a|aa)−− Q 3 a∆(a|b)∆(a|bbb) + 2Q 2 aQ b ∆(a|b)∆(ab|ab) + 2Q 2 aQ b ∆(a|b)∆(a|abb) − Q aQ 2 b ∆(a|b)∆(ab|aa) − QaQ2 bi.∆(a|b)∆(a|aab)The full expansion of G yxy xy xy xwill not be presented here.REFERENCES[1] Bryant, R.L.: Élie Cartan and geometric duality, Journées Élie Cartan 1998 & 1999, Inst. É.Cartan 16 (2000), 5–20.[2] Cartan, É.: Sur <strong>les</strong> variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241.[3] Cartan, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong> l’espace <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong>complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354.[4] Christoffel, E.B.: Über die Transformation <strong>de</strong>r homogenen Differentialausdrücke zweitenGra<strong>de</strong>s, J. reine angew. Math. 70 (1869), 46–70.[5] Crampin, M.; Saun<strong>de</strong>rs, D.J.: Cartan’s concept of duality for second-or<strong>de</strong>r ordinary differentialequations, J. Geom. Phys. 54 (2005), 146–172.[6] Engel, F.; <strong>Lie</strong>, S.: Theorie <strong>de</strong>r transformationsgruppen. Erster Abschnitt. Unter Mitwirkungvon Dr. Friedrich Engel, bearbeitet von Sophus <strong>Lie</strong>, B.G. Teubner, Leipzig, 1888. Reprintedby Chelsea Publishing Co. (New York, N.Y., 1970).[7] Grissom, C.; Thompson, G.; Wilkens, G.: Linearization of second-or<strong>de</strong>r ordinary differentialequations via Cartan’s equivalence method, J. Diff. Eq. 77 (1989), no. 1, 1–15.[8] Hsu, L.; Kamran, N.: Classification of second or<strong>de</strong>r ordinary differential equations admitting<strong>Lie</strong> groups of fibre-preserving point symmetries, Proc. London Math. Soc. 58 (1989), no. 3,387–416.[9] Isaev, A.V.: Zero CR-curvature equations for rigid and tube hyper<strong>sur</strong>faces, Complex Variab<strong>les</strong>and Elliptic Equations, 54 (2009), no. 3-4, 317–344.[10] Koppisch, M.A.: Zur Invariantentheorie <strong>de</strong>r gewöhlichen Differentialgleichungen zweiterOrdnung, Inaugural Dissertation, Leipzig, B.-G. Teubner, 1905.[11] <strong>Lie</strong>, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestaten I-IV. In: Gesammelte Abhandlungen,Vol. 5, B.G. Teubner, Leipzig, 1924, pp. 240–310; 362–427, 432–448.[12] <strong>Lie</strong>, S.; Scheffers, G.: Vor<strong>les</strong>ungen über continuirlichen gruppen, mit geometrischen undan<strong>de</strong>ren anwendungen, B.-G. Teubner, Leipzig, 1893. Reprinted by Chelsea Publishing Co.(New York, N.Y., 1971).[13] Merker, J.: Convergence of formal biholomorphisms between minimal holomorphically non<strong>de</strong>generatereal analytic hyper<strong>sur</strong>faces, Int. J. Math. Math. Sci. 26 (2001), no. 5, 281–302.[14] Merker, J.: On the partial algebraicity of holomorphic mappings between real algebraic sets,Bull. Soc. Math. France 129 (2001), no. 3, 547–591.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!