12.07.2015 Views

marker-assisted selection in wheat - ictsd

marker-assisted selection in wheat - ictsd

marker-assisted selection in wheat - ictsd

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 17 – Marker-<strong>assisted</strong> <strong>selection</strong> <strong>in</strong> fish and shellfish breed<strong>in</strong>g schemes 341a comb<strong>in</strong>ation of genetic mapp<strong>in</strong>g (l<strong>in</strong>kageand f<strong>in</strong>e mapp<strong>in</strong>g) to localize the QTL toa small region on the chromosome underanalysis, and candidate gene or positionalclon<strong>in</strong>g approaches to identify the geneswith<strong>in</strong> the QTL region.In some cases, sufficient biochemicalor physiological <strong>in</strong>formation is availableto <strong>in</strong>vestigate the association between thequantitative expression and the level of<strong>marker</strong> polymorphisms with<strong>in</strong> specificgenes. Nevertheless, this approach requiresa great amount of detailed <strong>in</strong>formation <strong>in</strong>order to choose which gene expla<strong>in</strong>s thegreatest effect and to have sufficient powerto detect the association. This <strong>in</strong>formationis start<strong>in</strong>g to appear <strong>in</strong> the aquaculture literaturefrom mult<strong>in</strong>ational projects suchas the Consortium of Genomic Resourcesfor All Salmonids Project (cGRASP) (Nget al., 2005).QTL mapp<strong>in</strong>g <strong>in</strong> fish us<strong>in</strong>g l<strong>in</strong>kage disequilibrium:theoretical and practicalconsiderationsValue of chromosomal manipulationsThe great reproductive flexibility of fishenables different breed<strong>in</strong>g designs to beimplemented relatively easily. Completelyhomozygous fish can be produced <strong>in</strong>only one generation us<strong>in</strong>g chromosomeset manipulations, without the many generationsof <strong>in</strong>breed<strong>in</strong>g needed <strong>in</strong> othervertebrates. These manipulations enabledoubl<strong>in</strong>g of the chromosomal complementof a haploid gamete (Young et al.,1996; Corley-Smith, Lim and Bradhorst,1996). Androgenetic double haploid <strong>in</strong>dividualscan be obta<strong>in</strong>ed by fertiliz<strong>in</strong>g eggsthat were <strong>in</strong>activated with gamma radiation,yield<strong>in</strong>g haploid embryos conta<strong>in</strong><strong>in</strong>gonly paternal chromosomes. Alternatively,gynogenetic double haploid <strong>in</strong>dividuals canbe obta<strong>in</strong>ed by activat<strong>in</strong>g the developmentof eggs with ultraviolet-<strong>in</strong>activated sperm,yield<strong>in</strong>g haploid embryos conta<strong>in</strong><strong>in</strong>g onlymaternal chromosomes. In each case,diploidy is restored us<strong>in</strong>g methods thatsuppress the first mitotic division (Figure 3;Streis<strong>in</strong>ger et al., 1980; Corley-Smith, Limand Bradhorst, 1996; Bijma, van Arendonkand Bovenhuis, 1997; Young et al., 1998).The use of these reproductive manipulationsto provide experimental populationsfor genetic analysis of complex quantitativetraits has been well described (Bongers etal., 1997; Robison, Wheeler and Thorgaard,2001; Tanck et al., 2001).Double haploids from <strong>in</strong>bred l<strong>in</strong>e crossesAfter a second round of uniparental reproduction(Figure 3), a collection of clonal l<strong>in</strong>escan be obta<strong>in</strong>ed that collectively is likelyto represent all the genetic variants fromthe base population (Bongers et al., 1997).Crosses of sex-reversed double haploid <strong>in</strong>dividualsfrom l<strong>in</strong>es that diverge for the traitsof <strong>in</strong>terest can produce F 1 l<strong>in</strong>es <strong>in</strong> completel<strong>in</strong>kage disequilibrium. These F 1 populationscan be used for further experimentationbased on F 2 or backcross designs. Anotherround of androgenesis of F 1 <strong>in</strong>dividuals willproduce a population of fully homozygous<strong>in</strong>dividuals. This design will have twice thepower for detect<strong>in</strong>g QTL as the standard F 2design (Mart<strong>in</strong>ez, 2003). The standard deviationof QTL position estimates is halved forthe double haploid design. This is due toan <strong>in</strong>crease <strong>in</strong> the additive genetic variance,which is doubled for the double haploiddesign due to redistribution of the genotypefrequencies <strong>in</strong> the progeny generation(Falconer and Mackay, 1996).Informative double haploid populationsof this sort have been utilized to performQTL analysis for embryonic developmentrate <strong>in</strong> ra<strong>in</strong>bow trout (Robison, Wheelerand Sund<strong>in</strong>, 2001; Mart<strong>in</strong>ez et al., 2002;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!